intel

Intel® Dynamic Load Balancer
(Intel® DLB) Software

User Guide

Revision v8.11.0

Sept 2024

Revision: v8.11.0

intel.

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

Customer is responsible for safety of the overall system, including compliance with applicable safety-related requirements or
standards.

© Intel Corporation. Intel, Xeon, and the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others. No license (express or implied, by estoppel or
otherwise) to any intellectual property rights is granted by this document.

Intel® DLB Software
User Guide Sept 2024
2 Revision: v8.11.0

Table of Contents

Table of Contents

Introductioncciviciciiei i s
2 Build INStructionscocveimimivanars s
2.1 Package Contentscoviiiiiiiiiiiii e
2.2 Intel® DLB Linux Driver Buildcccovvvviiiininiannnn.
2.3 Intel® DPDK DLB PMD BUild.......cocvviiiiiiniinniinenn.
2.4 Libdlb build ...
3 Sample Applicationsccicvciimiiriisrssrs s
3.1 Libdlb Sample APpPS....cocvieiiiiiiiiiii e
3.2 DPDK Sample ApPPS ..cciiiiiiiiiiiiiiiiiiiei i siee e
3.3 (5] I = 30 17 T o1 e] o
3.4 DLB Debug ULility ..ovoeeieieiiiiiieieieee e
4 Live Migrationcciccvcrmirmrrnmssnss s snss s s s nnn s
4.1 FrameworkK ..ocuviiiiiiiiei e reneeaeas
4.2 SIOV Live Migrationcocoviiiiiiiiiiiiieneee
4.3 SRIOV Live Migrationcccovviiiiiiiiiiiineens
4.4 QEMU for Live Migrationcocoviiiiiiiiiiiiineneens
5 FAQs
5.1 VFIO-PCI Bind ISSUE.....civiiiiiiiiieiiieieieneie e
Tables
Table 1. TermiNOIOgY uvee i
Sept 2024

Revision: v8.11.0

Intel® DLB Software
User Guide
3

intel.

Revision History

Date Revision Description
Sept 2024 v8.11.0 Bug fixes, support for kernel 6.10 and enhancements.
June 2024 v8.10.0 Bug fixes, live migration SRIOV support and enhancements.
May 2024 v8.9.0 Bug fixes, container support without virtualization.
March 2024 v8.8.0 Bug fixes, enqueue time reordering and enhancements.
Feb 2024 v8.7.2 Driver version correction of previous release.
Jan 2024 v8.7.1 Bug fixes, improvements, add support for RHEL 9.4 and kernel 6.7.
Dec 2023 v8.7.0 Bug fixes, improvements for intel-next kernel 6.6 support.
Nov 2023 v8.6.0 Bug fixes, support for intel-next kernel 6.6 and improvements.
October 2023 v8.5.2 Bug fixes and improvements.
August 2023 v8.5.1 Mailbox bug fixes and improvements.
August 2023 v8.5.0 Delayed Pop Token Support for PF-PMD, Dynamic HL Support + Bug Fixes.
May 2023 v8.4.0 DLB 2.x OpenEuler Support, Dynamic and Fixed HL Sizes.
April 2023 v8.3.0 DLB 2.x BKC Kernel 6.2 support, HW Delay Token support + Bug fixes.
March 2023 v8.2.0 DLB 2.x VM Live Migration add Ordered traffic support + Bug fixes.
Feb 2023 v8.1.0 DLB 2.x VM Live Migration add VM/state save and restore
Dec 2022 v8.0.0 DLB 2.x VM Live Migration framework and SIOV 5.19 intel-next kernel support
Nov 2022 v7.8.1 DLB 2.0 Production Candidate (PC) Plus Release
Sept 2022 v7.8.0 DLB 2.0 Production Candidate (PC) Plus Release
June 2022 v7.7.0 DLB 2.0 Production Candidate (PC) Release
Mar 2022 v7.6.0 DLB 2.0 Beta3 Release
Jan 2022 v7.5.0 DLB 2.0 Beta2 Release
Oct 2021 v7.4.0 DLB 2.0 Beta Release
July 2021 v7.3.0 Vector support and interrupt support added
May 2021 v7.2.0 Updated release with SIOV & DLB Monitor features enabled
April 2021 v7.0.0 Initial release to 01.org

Intel® DLB Software

User Guide
4

Sept 2024
Revision: v8.11.0

intel

1 Introduction

The Intel® Dynamic Load Balancer (Intel® DLB) is a PCle device that provides load-
balanced, prioritized scheduling of events (that is, packets) across CPU cores enabling
efficient core-to-core communication as discussed in this White Paper. It is a hardware
accelerator located inside the latest Intel® Xeon® devices offered by Intel. It supports
the event-driven programming model of DPDK's Event Device Library. This library is
used in packet processing pipelines for multi-core scalability, dynamic load-balancing,
and variety of packet distribution and synchronization schemes. The DLB can also be
used without DPDK as discussed later in this document.

This document describes the steps involved in building the DLB Kernel Driver, DPDK
DLB Poll Mode Driver and running the sample applications. It also introduces libdlb, a
client library for building DLB applications without using DPDK framework. This release
package supports Intel Dynamic Load Balancer 2.0 and 2.5.

Disclaimer:

This code is being provided to potential customers of DLB to enable the use of DLB
well ahead of the kernel.org and DPDK.org upstreaming process. Based on the open
source community feedback, the design of the code module can change in the
future, including API interface definitions. If the open source implementation differs
from what is presented in this release, Intel reserves the right to update the
implementation to align with the open source version at a later time and stop
supporting this early enablement version.

Table 1. Terminology

Term Description
DLB Intel Dynamic Load Balancer 2.x
DPDK Data Plane Development Kit
mdev Mediated Device
PMD Poll Mode Driver

Bifurcated PMD A DPDK PMD in which device configuration and management is handled
in a kernel driver.

PF PMD A DPDK PMD that takes ownership of the device PF function, its
configuration and management.

PCIe Peripheral Component Interconnect Express

PF PCIe device Physical Function

QE Queue Element - 16 Bytes data unit used by the DLB hardware to

enqueue events in CQ

Intel® DLB Software
Sept 2024 User Guide
Revision: v8.11.0 5

https://networkbuilders.intel.com/solutionslibrary/queue-management-and-load-balancing-on-intel-architecture

intel

Introduction

Term Description
SRIOV Single Root Input/Output Virtualization
SIov Scalable Input/Output Virtualization
VAS Virtual Address Space. VAS is synonymous with scheduling domain in
the case of DLB.
VFIO Virtual Function Input/Output
VM Virtual Machine

Intel® DLB Software

User Guide
6

Sept 2024
Revision: v8.11.0

intel

Build Instructions

2.1

2.2

Sept 2024

Package Contents

This software release is provided as a gzip archive that can be unzipped to install the
provided files and documentation. The archive is designed to provide three major
components:

1. DLB Kernel Driver Source Code

2. Files needed to patch DPDK to enable both PF (Physical Function) and
bifurcated modes.

3. The libdlb files that can be leveraged to use DLB without using DPDK.

For supported kernels, refer to README. When unzipped, the included files/directories
will be structured as follows:

dlb
I

|-driver

I
|-dib2

I
|-dpdk

I
|-dpdk_dlb_xxx.patch

I
|-libdlb

|-docs

Intel® DLB Linux Driver Build

DLB driver uses the kbuild build system. To build out-of-tree, simply run 'make’'. You
can optionally provide the KSRC environment variable to specify the kernel source tree
to build against. (If unspecified, build uses the host OS's kernel headers.)

$ cd $DLB_SRC_TOP

(top-level directory of the extracted DLB source package tarball)

$ cd dlb/driver/d1lb2

S make

Intel® DLB Software
User Guide

Revision: v8.11.0 7

intel

2.3

2.4

Build Instructions

Intel® DPDK DLB PMD Build

The release package contains an addon patch to the DPDK base package for DLB PMD
support. DPDK base packages are available for download at www.dpdk.org; be sure
to download the version specified in the DPDK Version section of the Readme. More
details on DLB PMD can be found at https://doc.dpdk.org/guides/eventdevs/dIb2.html

To apply the addon patch and build DPDK, follow these steps:
$ cd $DLB_SRC_TOP
$ wget <URL for DPDK base package>
$ tar xfJ dpdk-<DPDK version>.tar.xz

$ cd dpdk-<DPDK version> (Thisis the $DPDK_DIR path used in steps
below)

$ patch -Npl < $DLB_SRC _TOP/dlb/dpdk/<DPDK patch name>.patch
For meson-ninja build:

$ export DPDK DIR=path to dpdk-<DPDK version>

$ export RTE_SDK=$DPDK_DIR

$ export RTE TARGET=installdir

$ meson setup --prefix $RTE SDK/SRTE TARGET builddir

$ ninja -C builddir install

Additional meson configuration and build options can be found on dpdk.org.

Libdib build

To build libdlb:

$ cd $DLB_SRC_TOP/dlb/libdlb

$ make

Intel® DLB Software

User Guide
8

Sept 2024
Revision: v8.11.0

http://www.dpdk.org/
https://doc.dpdk.org/guides/eventdevs/dlb2.html

intel

Sample Applications

3.1

3.2

Sept 2024

Libdlb Sample Apps

The Libdlb library provides directed and load-balanced traffic tests to demonstrate
features supported by the Intel DLB. The sample codes are located at libdlb/examples
and are built together with libdIb. Details of supported APIs can be found in the
software release under docs/libdlb_html. Documentation is accessible from index.html
that can be opened using any browser. To load the dlb kernel driver and run the
sample applications, follow these steps:
$ modprobe mdev
$ modprobe vfio mdev
$ cd $DLB_SRC_TOP/dlb
$ insmod driver/dlb2/dlb2.ko
$ cd libdlb
For Directed Traffic test:
$ LD LIBRARY PATH=$PWD ./examples/dir traffic -n 128
For Load Balanced Traffic test:
$ LD_LIBRARY PATH=S$PWD ./examples/ldb traffic -n 128
(n: number of events to be sent)
The default wait mode supported is the interrupt mode. “-w"” option can be used to

change to poll or epoll mode. Use “-h” to display other command line options for the
sample applications.

DPDK Sample Apps

DPDK contains dpdk-test-eventdev, a standalone application to demonstrate eventdev
capabilities. Following are the steps to run its order_queue test with DLB. DLB
eventdev supports two modes of operation, Bifurcated and the PF PMD modes. Either
of the two can be used to run the sample app:
1) Load the drivers needed for DPDK applications:
e For Bifurcated mode, load the DLB Kernel Driver:
$ insmod $DLB_SRC_TOP/dlb/driver/dlb2/dlb2.ko

e For PF PMD mode, bind DLB to either vfio-pci or uio_pci_generic driver.

For vfio-pci driver:

Intel® DLB Software
User Guide

Revision: v8.11.0 9

I n te I . Sample Applications

$ modprobe vfio

$ modprobe vfio-pci

$ lspci -d :2710 #To check DLB2.0 device id (For ex: eb:00.0)
$ 1lspci -d :2714 # To check DLB2.5 device id (For ex: 14:00.0)

$ S$DPDK DIR/usertools/dpdk-devbind.py --bind vfio-pci \
eb:00.0

For uio_pci_generic driver:
$ modprobe uio pci generic
$ SDPDK _DIR/usertools/dpdk-devbind.py \

--bind uio _pci generic eb:00.0

For bifurcated mode bind to dlb driver:
$ S$DPDK DIR/usertools/dpdk-devbind.py \
--bind dlb2 eb:00.0
2) Setup Hugepages:
Check if the hugepage requirements are met using the following command:
$ cat /proc/meminfo | grep Huge

If no hugepages are available, setup 2048 count of 2048kB sized hugepages as
below (sudo required) :

$ mkdir -p /mnt/hugepages
$ mount -t hugetlbfs nodev /mnt/hugepages

$ echo 2048 > /sys/kernel/mm/hugepages/hugepages-
2048kB/nr hugepages

3) Run the application
$ cd $DPDK DIR (DPDK base directory)
$ cd builddir/app
e To run the application in PF PMD Mode

$./dpdk-test-eventdev -c 0xf -- --test=order queue \
--plcores=1 --wlcore=2,3 --nb flows=64

e To run the application in Bifurcated mode, --vdev=dlb2_event needs to be
passed and dlb device needs to be bound to DLB Driver.

Intel® DLB Software
User Guide Sept 2024
10 Revision: v8.11.0

3.3

Sept 2024

intel

$./dpdk-test-eventdev -c Oxf --vdev=dlb2 event \
-- --test=order queue --plcores=1l --wlcore=2,3 \
--nb_ flows=64

dpdk-test-eventdev’s perf-queue test can be used to explore the different queue
types supported by the Intel DLB. The —-stlist command-line option allows configuring
the number of stages and scheduling types. ‘p’ for parallel, ‘a’ for atomic and ‘o’ for
ordered queue types. --prod_eng_burst sz option can be used for producer core
to enqueue burst of events.

This test can also be run in both PF and Bifurcated PMD modes. Follow Steps 1 and 2
from above to load required drivers and setup hugepages, if not already done.

To run the application in PF PMD mode:

./dpdk-test-eventdev -c 0xf -- --test=perf queue --plcores=1l \
--wlcore=2,3 --nb flows=64 --stlist=p --prod eng burst sz=64

(DPDK uses DLB devices bound to vfio-pci or uio_pci_genric drivers)
For Bifurcated PMD mode:

./dpdk-test-eventdev -c O0xf --vdev=dlb2 event -- \
--test=perf queue --plcores=1 --wlcore=2,3 --nb flows=64 \
--stlist=p --prod eng burst sz=64

(To make sure DPDK does not use DLB devices bound to vfio-pci or
uio pci generic modules, use —no-pci option or unbound them. Vdev
dlb2 event uses DLB devices bound to DLB driver dlb2.)

More details of different testcases supported by dpdk-test-eventdev app and
command-line options can be found in

https://doc.dpdk.org/quides-21.11/tools/testeventdev.html

DLB Monitor

The DPDK patch provides dlb_monitor application, a telemetry tool that collects and
displays DLB hardware and software configuration and statistics. The tool also
identifies and reports common misconfiguration issues and potential application
performance issues. When any dpdk application is run, dlb_monitor can be triggered
as a secondary process to monitor eventdev port, queue, device status. This tool
cannot be started independently without a primary process running. The stats can be
printed once, or the application can run monitor in ‘watch mode’ (-w option) and the
data is repeatedly collected and displayed at a user-specified frequency.

$ cd builddir/app
e To run dlb_monitor in PF PMD Mode :

$./dpdk-dlb monitor -- -w

Intel® DLB Software
User Guide

Revision: v8.11.0 11

intel

3.4

Sample Applications

e To run in Bifurcated PMD Mode :

$./dpdk-dlb monitor --vdev dlb2 event -- -w

DLB Debug Utility

The DLB tar file provides dIb_monitor_sec application, a tool that collects and
displays DLB hardware register configuration and statistics for the libdlb applications.
It also works with DPDK applications in Bifurcated mode. When any DLB application is
running, d/b_monitor_sec can be triggered as another process to monitor ports,
queues and device status.

The statistics can be printed once, or the application can run this utility in ‘watch
mode’ (-w option) and the data is repeatedly collected and displayed at a user-
specified frequency.

e To run dlb_monitor_sec:
$ cd dlb/libdlb/cli

$./dlb monitor sec -h

Usage: dIb_monitor_sec [options]

Options:

-i <dev_id> DLB Device id (default: 0)

-r Reset stats after displaying them

-t <duration> Measurement duration (seconds) (min: 1s, default: 1s)

-wW Repeatedly print stats

-z Don't print ports or queues with 0 enqueue/dequeue/depth stats
-l Print LDB queue statistics

-d Print DIR queue statistics

-C Print CQ queue statistics

-a Equivalent to setting 'ldcg' flags

-0 Generate CSV output file, (generates header.csv,output_raw.csv prefixed

with dlb<devid>)

Intel® DLB Software

User Guide
12

Sept 2024
Revision: v8.11.0

intel

Live Migration

4.1

4.2

Sept 2024

Framework

DLB VFIO Live Migration interface has been added starting from release v8.0.0 for
SIOV and 8.10.0 for SRIOV. All steps of the following live migration stages have been
implemented:

1. Initiate Live Migration via VFIO interface
a. VFIO Live Migration state machine
b. Add VFIO_DEVICE_STATE_SAVING, _RUNNING, _STOP, _RESUMING
c. Communication between source VM and destination VM
2. Save and restore VAS/Domain configuration
a. VAS/Domain resource setup
i. Port configuration
ii. Queue configuration
iii. Port-queue links
iv. Sequence Number setup
b. Virtual Port/Queue --> Physical P/Q mapping
3. Save and restore QEs in DLB (Needed only in case there is a traffic through
DLB at the time of migration)
a. History list entries
b. Reorder buffers
c. QE'sin the Queues
4. Resume Application on the Destination device
a. VFIO_DEVICE_STATE_RESUMING.

For Live Migration to work, two identical VM (guest) instances are needed with the
same configuration. This allows saving the state of a guest VM and restoring it on
another VM instance, thereby allowing an application instance to continue running
while the state is transferred. Please note that 8 extra history list entries will be
reserved for live migration per VM. Users should take this into account when allocating
history list entries for a VM.

SIOV Live Migration

To test Live Migration for SIOV:

1. Load the DLB driver on the host.

2. Create an mdev (mdev-1) on dlb device 0:
export SYSFS PATH=/sys/class/dlb2/dlb0/
export UUIDl="uuidgen’
export MDEV PATH=/sys/bus/mdev/devices/$UUID1/dlb2 mdev/
echo $UUID1 >
$SYSFS_PATH/device/mdev_supported types/dlb2-dlb/create
Assign it all of the PF's resources
echo 2048 > SMDEV_PATH/num atomic inflights
echo 4096 > SMDEV_ PATH/num dir credits
echo 64 > SMDEV PATH/num dir ports

Intel® DLB Software
User Guide

Revision: v8.11.0 13

intel

Live Migration

echo 2048 > SMDEV_PATH/num hist list entries
echo 8192 > SMDEV_PATH/num_ ldb credits

echo 64 > SMDEV_PATH/num ldb ports

echo 32 > SMDEV_PATH/num_ ldb_ queues

echo 32 > SMDEV_PATH/num_sched domains

echo 8 > SMDEV_PATH/num sn0O_slots

echo 8 > SMDEV_PATH/num snl slots

3. Start the source VM with Qemu, and pass mdev-1 to the source VM. A sample

4.

5

Intel® DLB Software
User Guide
14

Qemu command is provided below. The highlighted ‘file’ option requires a VM
image path:

/usr/libexec/gemu-kvm -enable-kvm -global kvm-
apic.vapic=false -m 4096 -cpu host -drive

format=raw, file=<file-name> -bios
/usr/share/gemu/OVMF.fd -device vfio-

pci, sysfsdev=/sys/bus/mdev/devices/$UUID]1, x-enable-
migration=true -smp 8 -netdev
user,id=nl,hostfwd=tcp::2222-:22 -fsdev

local, security model=none, id=fsdev0, path=/home/ -device
virtio-9p-pci, id=£fs0, fsdev=£fsdev0,mount tag=hostshare -
nographic -serial stdio -monitor

telnet::2205, server,nowait -name debug-threads=on

From a different terminal, create another mdev (mdev-2) on dlb device 1:

export SYSFS PATH=/sys/class/dlb2/dlbl/

export UUID2="uuidgen’

export MDEV_ PATH=/sys/bus/mdev/devices/SUUID2/dlb2 mdev/
Create the mdev

echo $UUID2 >
$SYSFS_PATH/device/mdev supported types/dlb2-dlb/create
Assign it all of the PF's resources

echo 2048 > SMDEV_PATH/num _atomic inflights

echo 4096 > SMDEV_PATH/num dir credits

echo 64 > SMDEV_PATH/num dir ports

echo 2048 > SMDEV_PATH/num hist list entries

echo 8192 > SMDEV_PATH/num ldb credits

echo 64 > SMDEV_PATH/num ldb ports

echo 32 > SMDEV_PATH/num_ ldb queues

echo 32 > $MDEV PATH/num sched domains

echo 8 > SMDEV_PATH/num snO_slots

echo 8 > SMDEV_PATH/num snl slots

Run the Qemu command for Destination VM and pass mdev-2 to it. This will
not start the VM until the migration has been initiated.

/usr/libexec/gemu-kvm -enable-kvm -global kvm-
apic.vapic=false -m 4096 -cpu host -incoming tcp:0:6666
-drive format=raw, file=<file-name> -Dbios
/usr/share/gemu/OVMF.fd -device vfio-

pci, sysfsdev=/sys/bus/mdev/devices/S$UUID2, x-enable-
migration=true -smp 8 -netdev

user, 1d=n2, hostfwd=tcp::2203-:22 -fsdev

local, security model=none, id=fsdev0,path=/home/ -device
virtio-9p-pci, id=£fs0, fsdev=£fsdev0,mount tag=hostshare -

Sept 2024
Revision: v8.11.0

4.3

Sept 2024

intel

nographic -serial stdio -monitor
telnet::2206, server,nowait -name debug-threads=on

6. On the source VM, load the dlb driver and run Idb_traffic sample as follows:
./1db _traffic -n 1024

7. Trigger the migration using Qemu console of the source VM (to be triggered
immediately after issuing the Idb_traffic command on the source VM) :
telnet localhost 2205

(gemu) migrate -d tcp:0:6666
(gemu) info migrate

8. After the migration is completed, Idb_traffic is expected to continue and
complete on the destination VM.

Currently Live Migration is supported only on intel-next kernel v5.15.

SRIOV Live Migration

Live Migration for SRIOV is supported only on intel-next kernel v6.2 and later. The
Makefile will now generate TWO kernel drivers, an original DLB kernel driver dlb2.ko
and dlb vfio pci driver dlb2-vfio-pci.ko, which is a vfio-pci driver for dlb2 with live
migration support. Please use the following sequence to load the drivers.

a. insmod dlb2.ko

b. modprobe vfio-pci-core

c. insmod dIb2-vfio-pci.ko

There are different steps explained below for Live Migration to work for SRIOV.
1. Create a VF dlb device 0 and bind it to dIb2-vfio-pci,

echo 1 > /sys/class/dlb2/d1lb0/device/sriov_numvfs
echo 0000:ea:00.1 > /sys/bus/pci/drivers/dlb2/unbind
echo 8086 2711 > /sys/bus/pci/drivers/dlb2-vfio-pci/new id

Assign it 1/2 of the PF's resources

VFO0 RSCS = /sys/bus/pci/devices/0000:ea:00.0/vEf0 resources
echo 1024 > $(VFO_RSCS)/num atomic inflights
echo 1024 > $(VFO_RSCS)/num dir credits

echo 16 > $(VF0 RSCS)/num dir ports

echo 1024 > $(VFO _RSCS)/num hist list entries
echo 4096 > $(VFO RSCS)/num _1ldb credits

echo 16 > $(VF0_RSCS)/num_ldb ports

echo 16 > $(VF0_RSCS)/num_ldb queues

echo 16 > $(VFO _RSCS)/num sched domains

echo 8 > $(VF0 RSCS)/num _sn0O_slots

echo 8 > $(VF0 RSCS)/num _snl slots

2. Start the source VM with Qemu, and pass vfO from dIb0 to the source VM. A
sample Qemu command is provided below. The highlighted *file’ option
requires a VM image path:

Intel® DLB Software
User Guide

Revision: v8.11.0 15

intel

Intel® DLB Software
User Guide
16

Live Migration

gemu-system-x86 64 -enable-kvm -global kvm-apic.vapic=false \

-m 4096 -cpu host -drive format=raw,file=<file-name> \

-bios /usr/share/gemu/OVMF.fd \

-object iommufd,id=iommufd0 \

-device vfio-pci,host=ea:00.01, iommufd=iommufd0,enable-
migration=on\

-smp 8 -netdev user,id=nl,hostfwd=tcp::2222-:22 -fsdev

local, security model=none,id=fsdev0,path=/home/ -device virtio-9p-
pci,id=£fs0, fsdev=fsdev0,mount tag=hostshare -nographic -serial
stdio -monitor telnet::2205,server,nowait -name debug-threads=on

From a different terminal, create another VF on dIb device 1:

echo 1 > /sys/class/dlb2/dlb0/device/sriov_numvfs
echo 0000:ef:00.1 > /sys/bus/pci/drivers/dlb2/unbind
echo 8086 2711 > /sys/bus/pci/drivers/dlb2-vfio-pci/new_id

Assign it 1/2 of the PF's resources

VFO RSCS = /sys/bus/pci/devices/0000:e£:00.0/vE0_ resources
echo 1024 > $(VFO_RSCS) /num_atomic_inflights

echo 1024 > $(VFO_RSCS) /num dir credits

echo 16 > $(VFO_RSCS) /num_dir ports

echo 1024 > $(VFO_RSCS)/num hist list entries

echo 4096 > $(VFO_RSCS) /num_1ldb credits

echo 16 > $(VF0_RSCS) /num_1ldb ports
echo 16 > $(VF0_RSCS)/num_ldb queues
echo 16 > $(VF0_RSCS) /num_sched domains
echo 8 > $(VF0_RSCS)/num_sn0_slots

echo 8 > $(VF0_RSCS)/num_snl slots

Start the source VM with Qemu, and pass vf0 from dlb1 to the source VM. A
sample Qemu command is provided below. The highlighted *file’ option
requires a VM image path:

gemu-system-x86 64 -enable-kvm -global kvm-apic.vapic=false \

-m 4096 -cpu host -drive format=raw,file=<file-name> \

-bios /usr/share/gemu/OVMF.fd \

-object iommufd,id=iommufd0 \

-device vfio-pci,host=ef:00.01, iommufd=iommufd0, enable-
migration=on\

-smp 8 -netdev user,id=n2,hostfwd=tcp::2203-:22 -fsdev

local, security model=none,id=fsdev0,path=/home/ -device virtio-9p-
pci,id=£fs0, fsdev=£fsdev0,mount tag=hostshare -nographic -serial
stdio -monitor telnet::2206,server,nowait -name debug-threads=on

On the source VM, load the dlb driver and run Idb_traffic sample as follows:
./1db traffic -n 1024

Trigger the migration using Qemu console of the source VM (to be triggered
immediately after issuing the Idb_traffic command on the source VM) :
telnet localhost 2205
(gemu) migrate -d tcp:0:6666
(gemu) info migrate

After the migration is completed, Idb_traffic is expected to continue and
complete on the destination VM.

Sept 2024
Revision: v8.11.0

4.4

Sept 2024

intel

QEMU for Live Migration

Qemu from Intel BKC 5.15 can be used to test SIOV live migration.

To test live migration with gemu from BKC 6.2 for either SRIOV or SIOV, please use
the following steps to clone and change gemu (otherwise LM will not work due to DMA
memory transfer issue).
a. Clone gemu repo: https://github.com/intel-
innersource/virtualization.hypervisors.server.vmm.gemu-bkc
b. For EMR BKC 6.2, get branch emr-Q7.2-K6.2
c. Open the file migration/ram.c of the gemu repo, and add
ram_list_init_bitmaps() in the beginning of ram_save_complete() as follows,

static int ram_save_complete(QEMUFile *f, void *opaque)
{

RAMState **temp = opaque;

RAMState *rs = *temp;

intret =0;

ram_list_init_bitmaps(); /* added this for DLB LM WA */
rs->last_stage = !migration_in_colo_state();
WITH_RCU_READ_LOCK_GUARD()

{ if (!migration_in_postcopy()) }
d. Save the file and recompile the gemu. mkdir build;cd build;../configure --
target-list=x86_64-softmmu; make -j 32;

To test live migration with gemu from latest BKC 6.6 for either SRIOV or SIOV, please
note that gemu option “x-enable-migration=true” is changed to “enable-
migration=on". Also a new option x-force-all-dirty=on is added for “--device vifo-pci"
as follows,

-device vfio-pci,host=ea:00.01,iommufd=iommufd0,enable-migration=on,x-force-all-
dirty=on \

The standard gemu from stable-9.0 branch of github.com/gemu can also be used to
test SRIOV live migration on kernel 6.6.

Intel® DLB Software
User Guide

Revision: v8.11.0 17

https://github.com/intel-innersource/virtualization.hypervisors.server.vmm.qemu-bkc
https://github.com/intel-innersource/virtualization.hypervisors.server.vmm.qemu-bkc

intel

5 FAQs

5.1 VFIO-PCI Bind Issue

Error: “cannot bind to driver vfio-pci”
Fixes:

1. Enable VT-D in BIOS

2. Enable SRIOV in BIOS

3. Make sure the following is in /proc/cmdline (GRUB_CMDLINE_LINUX in
/etc/default/grub): iommu=pt intel_iommu=on

Intel® DLB Software
User Guide Sept 2024
18 Revision: v8.11.0

