
R

Intel® Ethernet Fabric
Performance Tuning Guide

Rev. 1.8

March 2024

Doc. No.: 632488, Rev.: 1.8

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described
herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

Copyright © –2023, Intel Corporation. All rights reserved.

R

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
2 Doc. No.: 632488, Rev.: 1.8

Revision History

Date Revision Description

February 2024 1.8 Product 11.6.0.0 release - Changes to this document include:
• Added Active-State Power Management to BIOS and Platform

Settings

September 2023 1.7 Product 11.5.1.0 release - Changes to this document include:
• Updated Using the Intel P-State Driver
• Added Note to oneAPI Level Zero and GPUDirect
• Added missing QoS setting to Switch Configurations for PFC
• Assorted grammatical, formatting and style improvements through

the document.

May 2023 1.6 Product 11.5.0.0 release - Changes to this document include:
• Updated Switch Configurations for PFC to use Traffic Class 0 instead

of 2
• Added Performance Tuning for Intel GPU
• Updated MPI Performance and MPI Benchmark Fundamentals to

point to Intel® Ethernet Fabric Suite FastFabric User Guide on
building and running benchmarks. As well as updating example
commands to use run_* scripts.

• Updated GPU Direct Requirements to include section on Intel® GPU
Direct.

January 2023 1.5 Product 11.4.1.0 release - Changes to this document include:
• Updated MPI Collective and Intel® oneCCL Tunings

November 2022 1.4 Product 11.4.0.0 release - Changes to this document include:
• Updated file paths for Ubuntu system
• Updated NIC Configuration for PFC to use software DCB

June 2022 1.3 Product 11.3.0.0 release - Changes to this document include:
• Increase PSM3_RV_MR_CACHE_SIZE for very large MPI messages

with PSM3_RDMA mode 1. PSM3 Environment Variables
• Improving MPI Alltoall performance. MPI Collective and Intel®

oneCCL Tunings
• Improving PSM3 TCP performance with

PSM3_TCP_SKIPPOLL_COUNT. TCP Performance
• Added Intel®oneCCL Multi-NIC guidance: MPI Collective and Intel®

oneCCL Tunings
• Increase PSM3_CUDA_THRESH_RNDV to a very large value (always

use eager) when using CUDA with TCP. CUDA and GPUDirect
• PSM3 as of IEFS 11.3 release may provide higher GPU Direct

bandwidth on systems with PCIe switches. CUDA and GPUDirect

March 2022 1.2 Product 11.2.0.0 release - Changes to this document include:
• Added guidance to disable PCIe Access Control Services. GPU Direct

Requirements
• Removed guidance on how to reduce CPU clock frequency with

intel_pstate, since it is not commonly used
• Enhanced chapter on Priority Flow Control (PFC) configuration on

NICs and example switches Priority Flow Control Configuration and
Tuning

• Added section on Intel®oneCCL MPI Collective and Intel® oneCCL
Tunings

continued...

RRevision History—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 3

Date Revision Description

• Added discussion on NVIDIA Multi-Process Service (MPS) CUDA and
GPUDirect and NCCL NVIDIA Collectives Communication Library
(NCCL)

• Added section on TCP performance tuning with PSM3 TCP
Performance

July 2021 1.1 Product 11.1.0.0 release - Changes to this document include:
• MPI collective tuning algorithms added to MPI Collective and Intel®

oneCCL Tunings
• Added guidance to lower NIC Tx/Rx queues for improved application

performance over TCP. IRQ Affinity and irqbalance.
• Updated description of the roce_ena parameter in irdma Module

Settings.
• Added section on CUDA and GPUDirect
• Added discussion on using PSM3_PRINT_STATS to detect fabric

drops in PSM3 Environment Variables
• Added details on Arista 7170 PFC tuning in Priority Flow Control

February 2021 1.0 Initial release.

R Intel® Ethernet Fabric—Revision History

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
4 Doc. No.: 632488, Rev.: 1.8

Contents

Revision History..3

Preface... 7
Intended Audience... 7
Intel® Ethernet Fabric Suite Documentation Library.. 7

How to Search the Intel® Ethernet Fabric Suite Documentation Set........................... 8
Documentation Conventions.. 8
Best Practices..9
License Agreements... 9
Technical Support...9

1.0 Introduction..10
1.1 Terminology... 10
1.2 Performance Tuning Quick Start Guide... 11

2.0 BIOS and Platform Settings.. 12
2.1 BIOS Recommendations.. 12
2.2 GPU Direct Requirements...13

3.0 Linux Settings... 14
3.1 CPU Frequency Scaling Drivers... 14

3.1.1 Using the Intel P-State Driver...14
3.1.2 Using the ACPI CPUfreq Driver and cpupower Governor..................................15

3.2 Priority Flow Control..17
3.3 IRQ Affinity and irqbalance...17
3.4 Memory Fragmentation..18
3.5 irdma Module Settings...18
3.6 Intel® Ethernet Driver (ice) Settings..20
3.7 TuneD Tuning Service.. 20

4.0 MPI Performance.. 22
4.1 MPI Benchmark Fundamentals..22
4.2 Intel® MPI Library Settings...25
4.3 PSM3 Environment Variables.. 26
4.4 MPI Collective and Intel® oneCCL Tunings.. 28
4.5 MPI Affinity.. 31
4.6 Dual/Multi-Rail... 32
4.7 TCP Performance.. 32

5.0 Performance Tuning for Intel GPU.. 33
5.1 oneAPI Level Zero and GPUDirect..33

6.0 Performance Tuning for NVIDIA GPU.. 34
6.1 CUDA and GPUDirect...34
6.2 NVIDIA Collectives Communication Library (NCCL).. 35

7.0 Priority Flow Control Configuration and Tuning.. 36
7.1 NIC Configuration for PFC.. 36
7.2 Switch Configurations for PFC...38
7.3 Verification for PFC..42

RContents—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 5

Tables
1 Terminology..10
2 Recommended BIOS Settings (Intel® Xeon® Scalable Processors).................................. 12
3 PSM3 RoCEv2 (Verbs) Performance Tunings.. 26

R Intel® Ethernet Fabric—Tables

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
6 Doc. No.: 632488, Rev.: 1.8

Preface

This manual is part of the documentation set for the Intel® Ethernet Fabric Suite
Fabric (Intel® EFS Fabric), which is an end-to-end solution consisting of Network
Interface Cards (NICs), fabric management, and diagnostic tools.

The Intel® EFS Fabric delivers the next generation, High-Performance Computing
(HPC) network solution that is designed to cost-effectively meet the growth, density,
and reliability requirements of HPC and AI training clusters.

Intended Audience

The intended audience for the Intel® Ethernet Fabric Suite (Intel® EFS) document set
is network administrators and other qualified personnel.

Intel® Ethernet Fabric Suite Documentation Library

Intel® Ethernet Fabric Suite publications are available at the following URL:

https://www.intel.com/content/www/us/en/support/articles/000088090/ethernet-
products/intel-ethernet-software.html

Use the tasks listed in this table to find the corresponding Intel® Ethernet Fabric Suite
document.

Task Document Title Description

Installing host software
Installing NIC firmware

Intel® Ethernet Fabric Suite Software
Installation Guide

Describes using a Text-based User Interface (TUI) to
guide you through the installation process. You have
the option of using command line interface (CLI)
commands to perform the installation or install using
the Linux distribution software.

Managing a fabric using
FastFabric

Intel® Ethernet Fabric Suite FastFabric
User Guide

Provides instructions for using the set of fabric
management tools designed to simplify and optimize
common fabric management tasks. The management
tools consist of Text-based User Interface (TUI) menus
and command line interface (CLI) commands.

Running MPI applications
on Intel® EFS
Running middleware that
uses Intel® EFS

Intel® Ethernet Fabric Suite Host
Software User Guide

Describes how to set up and administer the Network
Interface Card (NIC) after the software has been
installed and provides a reference for users working
with Intel PSM3. Performance Scaled Messaging 3
(PSM3) is an Open Fabrics Interface (OFI, also called
libfabric) provider which implements an optimized
user-level communications protocol. The audience for

continued...

RPreface—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 7

https://www.intel.com/content/www/us/en/support/articles/000088090/ethernet-products/intel-ethernet-software.html
https://www.intel.com/content/www/us/en/support/articles/000088090/ethernet-products/intel-ethernet-software.html

Task Document Title Description

this document includes cluster administrators and
those running or implementing Message-Passing
Interface (MPI) programs.

Optimizing system
performance

Intel® Ethernet Fabric Performance
Tuning Guide

Describes BIOS settings and parameters that have
been shown to ensure best performance, or make
performance more consistent, on Intel® Ethernet
Fabric Suite Software. If you are interested in
benchmarking the performance of your system, these
tips may help you obtain better performance.

Learning about new
release features, open
issues, and resolved
issues for a particular
release

Intel® Ethernet Fabric Suite Software Release Notes

How to Search the Intel® Ethernet Fabric Suite Documentation Set

Many PDF readers, such as Adobe Reader and Foxit Reader, allow you to search across
multiple PDFs in a folder.

Follow these steps:

1. Download and unzip all the Intel® Ethernet Fabric Suite PDFs into a single folder.

2. Open your PDF reader and use CTRL-SHIFT-F to open the Advanced Search
window.

3. Select All PDF documents in...

4. Select Browse for Location in the dropdown menu and navigate to the folder
containing the PDFs.

5. Enter the string you are looking for and click Search.

Use advanced features to further refine your search criteria. Refer to your PDF reader
Help for details.

Documentation Conventions

The following conventions are standard for Intel® Ethernet Fabric Suite
documentation:

• Note: provides additional information.

• Caution: indicates the presence of a hazard that has the potential of causing
damage to data or equipment.

• Warning: indicates the presence of a hazard that has the potential of causing
personal injury.

• Text in blue font indicates a hyperlink to a figure, table, or section in this guide.
Links to websites are also shown in blue. For example:

See License Agreements for more information.

For more information, visit www.intel.com.

• Text in bold font indicates user interface elements such as menu items, buttons,
check boxes, key names, key strokes, or column headings. For example:

R Intel® Ethernet Fabric—Preface

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
8 Doc. No.: 632488, Rev.: 1.8

http://www.intel.com

Click the Start button, point to Programs, point to Accessories, and then click
Command Prompt.

Press CTRL+P and then press the UP ARROW key.

• Text in Courier font indicates a file name, directory path, or command line text.
For example:

Enter the following command: sh ./install.bin
• Text in italics indicates terms, emphasis, variables, or document titles. For

example:

Refer to Intel® Ethernet Fabric Suite Software Installation Guide for details.

In this document, the term chassis refers to a managed switch.

Procedures and information may be marked with one of the following qualifications:

• (Linux) – Tasks are only applicable when Linux is being used.

• (Host) – Tasks are only applicable when Intel® Ethernet Host Software or Intel®
Ethernet Fabric Suite is being used on the hosts.

• Tasks that are generally applicable to all environments are not marked.

Best Practices

• Intel recommends that users update to the latest versions of Intel® Ethernet
Fabric Suite software to obtain the most recent functional and security updates.

• To improve security, the administrator should log out users and disable multi-user
logins prior to performing provisioning and similar tasks.

License Agreements

This software is provided under one or more license agreements. Refer to the license
agreement(s) provided with the software for specific detail. Do not install or use the
software until you have carefully read and agree to the terms and conditions of the
license agreement(s). By loading or using the software, you agree to the terms of the
license agreement(s). If you do not wish to so agree, do not install or use the
software.

Technical Support

Creating a technical support ticket for Intel® Ethernet Fabric Suite products is
available 24 hours a day, 365 days a year. Contact Intel® Customer Support or visit
https://www.intel.com/content/www/us/en/support.html for additional details.

RPreface—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 9

https://www.intel.com/content/www/us/en/support.html

1.0 Introduction

The Intel® Ethernet Fabric Suite (Intel® EFS) is designed for excellent out-of-the-box
performance. However, you may be able to further tune the performance to better
meet the needs of your system.

This document describes settings and parameters that have been shown to improve
MPI/HPC performance on Intel® Ethernet Fabric Suite. If you are interested in
benchmarking the performance of your system, these tips may help you obtain better
performance.

For details about the other documents for the Intel® EFS product line, refer to Intel®
Ethernet Fabric Suite Documentation Library of this document. You may also consult
the Intel® Ethernet 800 Series Linux Performance Tuning Guide for Intel® Ethernet
E810 Network Adapter-specific tunings.

This version of the tuning guide is focused only on the optimization of MPI/HPC
applications. Future versions will contain guidance for optimization with parallel file
systems for high performance storage.

Terminology

The table below lists the abbreviations and acronyms used in this document.

Table 1. Terminology

Term Description

ACPI Advanced Configuration and Power Interface

BIOS Basic Input/Output System

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

GCC GNU Compiler Collection

HPC High-Performance Computing

HPL High-Performance Linpack

HT Intel® Hyper Threading

EFS Intel® Ethernet Fabric Suite

IMB Intel® MPI Benchmarks

IO Input/Output

IP Internet Protocol

IRQ Interrupt Request

MPI Message Passing Interface

MTU Maximum Transmission Unit

continued...

1.1

R Intel® Ethernet Fabric—Introduction

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
10 Doc. No.: 632488, Rev.: 1.8

Term Description

NCCL NVIDIA Collective Communication Library

NUMA Non-Uniform Memory Access

OFED OpenFabrics Enterprise Distribution

OFI OpenFabrics Interface

OMB OSU Micro Benchmarks

OS Operating System

OSU Ohio State University

PPN Processes per Node

PSM3 Performance Scaled Messaging 3

QP Queue Pair

RDMA Remote Direct Memory Access

RoCE RDMA over Converged Ethernet

SDMA Send Direct Memory Access

SMP Symmetric Multiprocessing

TBB Intel® Threading Building Blocks

TC Traffic Class

TCP Transmission Control Protocol

THP Transparent Huge Pages

VM Virtual Machine

VT Intel® Virtualization Technology

Performance Tuning Quick Start Guide

The list below is intended to outline the most important tunings for Intel® EFS
performance, sorted by most important at the top, to least important moving towards
the bottom of the list. This is only a rough guide and individual clusters may require
other tunings, discussed in other sections of this guide.

• Set BIOS settings. (See BIOS and Platform Settings.)

• Enable Intel® Turbo Boost Technology, if possible.

Enable "Performance Governor" with either ACPI or Intel® P-State frequency
driver:

cpupower -c all frequency-set -g performance

• Make sure the MPI is using libfabric with the PSM3 provider. (See Intel® MPI
Library Settings.)

Use the latest available version of the Intel® MPI Library for optimized application
performance.

• Confirm that priority flow control (PFC) is configured correctly and there is no
packet loss in the fabric impacting performance. (See Priority Flow Control.)

• Consider adjusting PSM3 environment variables to further tune performance.

1.2

RIntroduction—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 11

2.0 BIOS and Platform Settings

Setting the system BIOS is an important step in configuring a cluster to provide the
best mix of application performance and power efficiency. This section lists settings
that can maximize application performance. Optimally, settings similar to these should
be used during a cluster bring-up and validation phase in order to show that the fabric
is performing as expected. For the long term, you may want to set the BIOS to
provide more power savings, even though that may reduce overall application and
fabric performance to some extent.

BIOS Recommendations

This section provides an example of the recommended BIOS settings.

Table 2. Recommended BIOS Settings (Intel® Xeon® Scalable Processors)

BIOS Setting Value

CPU Power and Performance Policy Performance or Balanced
Performance1

Workload Configuration Balanced

Uncore Frequency Scaling Enabled

Performance P-limit Enabled

Enhanced Intel SpeedStep® Technology Enabled

Intel Configurable TDP Disabled

Intel® Turbo Boost Technology Enabled

Intel® VT for Directed I/O (VT-d) Disabled

Energy Efficient Turbo Enabled

Package C-State C6(Retention) state

C1E Enabled

Processor C6 Enabled

Intel® Hyper-Threading Technology No recommendation

IOU Non-posted Prefetch Disabled (where available)2

NUMA Optimized Enable3

Sub_NUMA Cluster Disabled

continued...

2.1

R Intel® Ethernet Fabric—BIOS and Platform Settings

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
12 Doc. No.: 632488, Rev.: 1.8

BIOS Setting Value

Snoop Holdoff Count 94

Active-State Power Management Disabled

Notes: 1. To get the most consistent Turbo mode performance for demanding workloads, set this to
"Performance". Either Performance or Balanced Performance will result in good Intel®
Ethernet Fabric performance.

2. May not be visible in the BIOS settings. A setting of enabled may cause limits in peak
bandwidth.

3. Also known as Memory.SocketInterleave=NUMA in some BIOSes.
4. Also known as Snooped Response Wait Time for Posted Prefetch in some BIOSes.

GPU Direct Requirements

This section provides an example fo the recommenced BIOS settings for use with GPU
Direct.

Intel® GPU Direct

For GPU Direct to function properly, Intel recommends disabling PCIe Access Control
Services (ACS), also known as IO virtualization, VT-d, or IOMMU. If left enabled,
unpredictable behavior such as application failures may be experienced.

Additionally, setting Memory Mapped I/O Size to 1024G and MMIO High Base to
56T can improve performance, if available.

Refer to https://dgpu-docs.intel.com/driver/installation.html for more information on
configuring the host system.

NVIDIA GPU Direct

For GPU Direct to function properly, NVIDIA recommends disabling PCIe Access
Control Services (ACS), also known as IO virtualization, VT-d, or IOMMU. If left
enabled, unpredictable behavior such as application failures may be experienced.
Refer to the NVIDIA documentation, PCIe Access Control Services (ACS), for how to
disable these services.

2.2

RBIOS and Platform Settings—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 13

https://dgpu-docs.intel.com/driver/installation.html
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/troubleshooting.html#pci-access-control-services-acs

3.0 Linux Settings

Intel recommends the following settings to enable consistent performance
measurements on the Linux distributions supported with Intel® Ethernet Fabric Suite.

CPU Frequency Scaling Drivers

Methods for power saving on CPUs can adversely impact performance. By reducing the
CPU clock frequency based on sustained demand and thermal conditions, CPUs reduce
power consumption. This can result in substantial savings on power and cooling
requirements. However, this can reduce the performance or make performance
measurements more variable.

The default scaling driver in our supported OSes is the Intel® P-State
(intel_pstate) driver. An alternative driver called the Advanced Configuration and
Power Interface (ACPI) CPUfreq (acpi_cpufreq) is also available. Both have their
advantages and disadvantages, but only one can be active at a time. This section
describes how to use each driver for consistent, best-effort performance
measurements. Setting a frequency scaling driver for maximum performance is
advisable during cluster/fabric bring-up when trying to determine if all components of
the cluster are performing up to their full capabilities.

For long-run operation of a production cluster/supercomputer, settings other than
those described in the following sections may be desired to scale up for performance
when loaded, and to scale down for energy savings when idle.

Using the Intel P-State Driver

The default scaling driver, for our supported OSes, is the Intel P-State (intel_pstate)
driver. No additional setup is required. A detailed description of the design and
features available with Intel P-State drivers is available here: https://
www.kernel.org/doc/html/v4.18/admin-guide/pm/intel_pstate.html. Detailed
explanation of these features is beyond the scope of this document. In general, no
customization beyond the default is required for the best fabric performance, other
than ensuring that the turbo frequencies are enabled and the performance governor is
enabled.

The following settings are sysfs entries that can be controlled by the system
administrator in real time, and a reboot is not required in order to take effect.
However, due to the nature of Intel P-State, it is not always straight-forward to
monitor the core frequencies and confirm your settings are in effect. For example, a
command such as grep MHz /proc/cpuinfo will return a wide range of clock
frequencies at any given time, unlike ACPI, which would return a consistent value in a
format like "2X00000" or "2X01000" if Turbo mode is enabled. Intel recommends
confirming and monitoring the clock frequencies using a kernel tool such as
turbostat.

3.1

3.1.1

R Intel® Ethernet Fabric—Linux Settings

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
14 Doc. No.: 632488, Rev.: 1.8

https://www.kernel.org/doc/html/v4.18/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/v4.18/admin-guide/pm/intel_pstate.html

To run the CPU at its maximum non-Turbo frequency (P1) without scaling to lower
frequencies, as root set the minimum frequency to 100% as shown below:

echo 100 > /sys/devices/system/cpu/intel_pstate/min_perf_pct

To run the CPU at its maximum Turbo frequency, in the BIOS, set the following values:

• Set Intel® Turbo Boost Technology ➤ Enabled

• If it is in your BIOS, set Advanced ➤ Advanced Power Management
Configuration ➤ CPU P State Control ➤ Turbo Mode

• echo 0 > /sys/devices/system/cpu/intel_pstate/no_turbo
• Set the cpufreq policy to "performance": cpupower frequency-set -g

performance
For information about the CPU frequency driver you are running and other
frequency information, use the command:

cpupower frequency-info
If you have previously disabled the P-state driver, you must re-enable it before
applying the tunings listed above. To re-enable the P-state driver:

1. In /etc/default/grub, remove intel_pstate=disable from the
GRUB_CMDLINE_LINUX command line.

2. Apply the change using:

if [-e /boot/efi/EFI/redhat/grub.cfg]; then
GRUB_CFG=/boot/efi/EFI/redhat/grub.cfg
elif [-e /boot/grub2/grub.cfg]; then
GRUB_CFG=/boot/grub2/grub.cfg
fi
grub2-mkconfig -o $GRUB_CFG

NOTE

The code example above is for Red Hat. Other OSes may require a different
method for modifying grub boot parameters.

3. Reboot.

For more information on controlling and tuning the behavior of the Intel P-State driver,
consult https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt.

Using the ACPI CPUfreq Driver and cpupower Governor

NOTE

If you are satisfied with the behavior of your system when using the Intel P-State
driver, you do not need to set up the acpi_cpufreq driver.

The ACPI CPUfreq (acpi_cpufreq) driver, in conjunction with cpupower, can be used to
set a consistent CPU clock rate on all CPU cores.

3.1.2

RLinux Settings—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 15

https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt

To enable the ACPI CPUfreq driver:

1. Disable intel_pstate in the kernel command line:

Edit /etc/default/grub by adding intel_pstate=disable to
GRUB_CMDLINE_LINUX.

For example:

GRUB_CMDLINE_LINUX=vconsole.keymap=us console=tty0
vconsole.font=latarcyrheb-sun16 crashkernel=256M
console=ttyS0,115200 intel_pstate=disable

2. Apply the change using:

if [-e /boot/efi/EFI/redhat/grub.cfg]; then
GRUB_CFG=/boot/efi/EFI/redhat/grub.cfg
elif [-e /boot/grub2/grub.cfg]; then
GRUB_CFG=/boot/grub2/grub.cfg
fi
grub2-mkconfig -o $GRUB_CFG

NOTE

The code example above is for Red Hat. Other OSes may require a different
method for modifying grub boot parameters.

3. Reboot.

When the system comes back up with intel_pstate disabled, the acpi_cpufreq
driver is loaded.

To reduce run-to-run performance variations during benchmarking, you may want to
pin the CPU clock frequency to a specific value and use the Performance setting of
the CPU power governor.

To set the CPU clock frequency and power governor:

1. Set the clock frequency values and governor using the command line below.

 sudo cpupower -c all frequency-set --min <value> --max <value>
\ -g Performance

Where <value> is a valid number and unit (GHz) for min and max settings. Note
the values can be the same.

For example, the following command will set the frequency of all cores to a value of
2.3 GHz and Performance governor, when using the acpi-cpufreq driver.

sudo cpupower -c all frequency-set --min 2.3GHz --max 2.3GHz \
-g Performance

NOTE

The power savings will diminish and the server chassis temperature will most likely
rise if the above scheme is used.

R Intel® Ethernet Fabric—Linux Settings

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
16 Doc. No.: 632488, Rev.: 1.8

To get the maximum advantage from Intel® Turbo Boost Technology:

1. Ensure that Turbo mode is set to Enabled in the BIOS (as recommended in BIOS
and Platform Settings).

2. Set the frequencies appending "01" to the clock rate. This will enable Intel® Turbo
Boost Technology.

For example, if running on an Intel® Xeon® Scalable 8360Y Processor (nominal 2.4
GHz clock rate), then the corresponding command option would be:

sudo cpupower -c all frequency-set --min 2.401GHz --max 2.401GHz \
-g Performance

Priority Flow Control

Enabling priority flow control (PFC) and confirming it is in use is an important aspect
of performance tuning. For small node counts and point-to-point microbenchmarks, it
is not essential to have PFC enabled for acceptable performance. However, collective
communications or using high core counts per node, or HPC applications running on
roughly eight nodes or more, depend heavily on PFC for the best possible performance
and lowest run to run variation.

Refer to Priority Flow Control Configuration and Tuning that covers various examples
for how to configure Ethernet NICs and switches for PFC.

IRQ Affinity and irqbalance

The purpose of irqbalance is to distribute hardware interrupts across cores on a multi-
core system in order to increase performance. Intel has not identified a crucial role in
manually setting IRQ affinities for the ice driver in order to obtain good performance
with MPI applications using PSM3/RoCEv2. However, if you want to adjust the IRQ
affinity, follow the guidance provided by Intel with the ice Linux Base Driver for the
Intel(R) Ethernet Controller 800 Series driver package.

To stop irqbalance, execute:

systemctl stop irqbalance

To ensure irqbalance is disabled on boot:

systemctl disable irqbalance

The next step is to run the set_irq_affinity script, as outlined in the ice driver
readme file.

Some MPI applications running over TCP may benefit from lowering the number of
Tx/Rx queues. See Intel® Ethernet Driver (ice) Settings for details.

3.2

3.3

RLinux Settings—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 17

Memory Fragmentation

When a Linux system has been running for a while, memory fragmentation, which
depends heavily on the nature of the applications that are running on it, can increase.
The more processes that request the kernel to allocate and free physical memory, the
quicker the physical memory becomes fragmented. If that happens, performance on
applications can suffer significantly. Over time, the performance of benchmarks and
applications can decrease because of this issue.

Cluster/system administrators and users can take steps to address the memory
fragmentation issue as described below. Note that users will not be able to apply their
settings until the system administrators have applied theirs first.

System Administrator Settings

The following settings are performed by system administrators.

1. Enable THP to always.

2. As an alternative to THP, reserve huge pages with the sysfs entries,
nr_hugepages or nr_overcommit_hugepages.

3. To better ensure that the system will allocate 2M pages to the job, set the cluster's
job submission system to drop the caches and compact memory before each user
job with these commands:

echo 3 >/proc/sys/vm/drop_caches
echo 1 >/proc/sys/vm/compact_memory

User Settings

The following settings are performed by users.

1. Assuming that the system administrator has enabled THP (described in #1 above),
the user can align larger MPI buffers on 2M boundaries and pad the total size to a
multiple of 2M.

You can use posix_memalign or Intel's _mm_malloc to cause the OS to try to
allocate 2 MB pages.

2. Assuming that the system administrator has enabled the alternative to THP
(described in #2 above), the user can explicitly allocate huge pages using mmap,
Intel® Threading Building Blocks (TBB) malloc with
TBB_MALLOC_USE_HUGE_PAGES=1, or libhugetlbfs.

irdma Module Settings

The irdma (Intel RDMA) module is used to communicate using the RoCE protocol over
compatible Intel NICs. The module parameter roce_ena=1 must be set in order to
globally set all ports on the NIC to run in RoCE mode. If the cluster was installed using
the Intel® Ethernet Fabric Suite FastFabric installation process, this module parameter
should be set automatically. To check the value:

:> cat /sys/module/irdma/parameters/roce_ena
1

3.4

3.5

R Intel® Ethernet Fabric—Linux Settings

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
18 Doc. No.: 632488, Rev.: 1.8

If the value is 0, you must change it to 1. Perform the following to make the change
persistent on reboots:

:> echo 'options irdma roce_ena=1' >> /etc/modprobe.d/irdma.conf
:> dracut -f
:> reboot

Setting all ports globally with roce_ena=1 is sufficient for most HPC use cases. In the
case where you want to only set a specific port to use RoCE, use the parameter
roce_port_cfg as described in README_irdma.txt that is contained within the irdma
software release.

Note that there may already be other contents in the irdma.conf file. You will
append the file with the previous setting. Also, you may want to check the contents of
the file to be sure it fits the needs of your system.

4K MTU

For the highest possible bandwidth, ensure the MTU for the device is 4 KB, for
example:

:> ibv_devinfo -v -d <devname> | grep active_mtu
 active_mtu: 4096 (5)

This requires that the corresponding network interface is using an MTU of at least 100
bytes larger (which includes IP and RoCE headers, maybe VLAN headers), but is
typically set to 9K (jumbo). For example, in /etc/sysconfig/network-scripts/
ifcfg-<interface>, insert the line:

MTU=9000

Increasing irdma Queue Pair (QP) Limit
There may be some applications that fail with the following message (or similar):

libirdma-irdma_vmapped_qp: failed to create QP, status 75
libirdma-irdma_ucreate_qp: failed to map QP
node1.314829Ran out of memory (err=4)
node1.314851Process connect/disconnect error: 4, opcode 206

The default number of QPs for irdma is 4096. If this occurs, you can add the additional
module parameter to irdma.conf:

:> echo 'options irdma limits_sel=5' >> /etc/modprobe.d/irdma.conf

Again, dracut -f and reboot is required to make the changes persistent. This new
value allows for 65,532 QPs.

RLinux Settings—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 19

Intel® Ethernet Driver (ice) Settings

Some MPI applications running over TCP may benefit from lowering the number of
Tx/Rx queues. The default number of queues enabled for each Ethernet port by the
driver at initialization is equal to the total number of cores, including hyper threads. In
platforms with high core count CPUs, this configuration can cause resource contention.
In practice, Intel has found that reducing the number of Tx/Rx queues down to eight
has resulted in improved performance for applications such as the Weather Research
and Forecasting Model (WRF).

ethtool -L <interface> combined 8

where <interface> is the name of the Ethernet NIC in use. In order to make these
settings persistent, you may wish to use the NetworkManager utility. This script would
make the settings described above persistent on boot:

:> cat /etc/NetworkManager/dispatcher.d/20-ethtool
#!/bin/bash
if ["$1" = "<interface>"] && ["$2" = "up"]; then
 /sbin/ethtool -L <interface> combined 8
fi

Make sure 755 permissions are assigned to the file for it to be properly executed at
boot time.

NOTE

Intel recommends that you unload and reload irdma after the system boots, or
perform this change to the ice driver before loading irdma.

To confirm the settings took effect:

[root@node ~]# ethtool -l <interface>
...
Current hardware settings:
RX: 0
TX: 0
Other: 1
Combined: 8

TuneD Tuning Service

The TuneD tuning service has the potential to improve network latency and/or
bandwidth depending on the profile selected, especially when running applications or
benchmarks over TCP. It should be used carefully because certain profiles consume
significantly more power and demand more cooling. A complete description of the
TuneD service can be found here: https://access.redhat.com/documentation/en-us/
red_hat_enterprise_linux/8/html/
monitoring_and_managing_system_status_and_performance/getting-started-with-
tuned_monitoring-and-managing-system-status-and-performance.

Based on internal testing on sixteen 3rd Generation Intel® Xeon® Scalable Processors
nodes connected with a 200 GB Ethernet network, the best point-to-point latency is
achieved with the latency-performance, hpc-compute, and network-latency profiles.

3.6

3.7

R Intel® Ethernet Fabric—Linux Settings

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
20 Doc. No.: 632488, Rev.: 1.8

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance

These profiles deliver the lowest and most consistent point-to-point latency. The best
application performance is achieved with the throughput-performance profile (which is
the default). Conversely, although the latency-performance profile gave the lowest
and most consistent point-to-point latency, it impacted some applications negatively
by approximately 5%.

Although the TuneD tuning service has the potential to improve latency, its impact on
application performance, power consumption, and the thermal state of the servers
should be understood before deploying a more aggressive profile in production.

RLinux Settings—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 21

4.0 MPI Performance

MPI libraries are a key type of middleware for building HPC applications. The Intel®
Ethernet Fabric Suite Software package includes a build of Open MPI, though many
times it is recommended and preferred to use the latest Intel® MPI Library. This
chapter shows how to use Open MPI and the Intel® MPI Library, followed by general
performance tuning recommendations.

If the Open MPI package was installed, the exact version can be seen
under /usr/mpi/gcc such as:

[/usr/mpi/gcc]$ ls -r *
openmpi-x.y.z-ofi

NOTE

x.y.z refers to the latest version of openmpi.

The gcc directory means that the GNU Compiler Collection (GCC) was used to build
the MPI library.

For best performance, run MPIs using libfabric with the Performance Scaled
Messaging 3 (PSM3) provider included with Intel® Ethernet Host Software.

Intel® Ethernet Fabric Suite FastFabric contains a collection of several common MPI
applications and benchmarks. Refer to the Intel® Ethernet Fabric Suite FastFabric User
Guide for building and running the included sample applications and benchmarks. Also
included in the FastFabric suite are the <MPI>.params files. Each file includes
required and optional arguments, as well as brief descriptions, for working with the
related MPI and PSM3.

NOTE

<MPI> refers to the specific MPI (that is, intelmpi.params or openmpi.params).

MPI Benchmark Fundamentals

Two common benchmark applications, also included in FastFabric, are used to measure
MPI performance: OSU Micro-Benchmarks (OMB) (https://mvapich.cse.ohio-state.edu/
benchmarks/) and Intel® MPI Benchmarks (IMB) (https://github.com/intel/mpi-
benchmarks). In general, the goal of these benchmarks is to measure point-to-point
performance (latency, bandwidth, and message rate) between two nodes. Additionally,
MPI collectives performance can be measured using a large group of nodes.

For simplicity, this section demonstrates how to run the Intel® MPI Benchmarks using
FastFabric as packaged with Intel® EFS to measure latency, bandwidth, and message
rate. These examples use the IMB-MPI1 benchmark. For more information, refer to
the Intel® MPI Benchmarks User Guide.

4.1

R Intel® Ethernet Fabric—MPI Performance

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
22 Doc. No.: 632488, Rev.: 1.8

https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/intel/mpi-benchmarks
https://github.com/intel/mpi-benchmarks
https://software.intel.com/content/www/us/en/develop/documentation/imb-user-guide/top.html

NOTE

Examples are shown using the FastFabric ./run_* scripts included in the Intel®
Ethernet Fabric Suite.

To begin, follow instruction in the Intel® Ethernet Fabric Suite FastFabric User Guide to
build and run sample MPI benchmarks.

NOTE

You must have password-less ssh enabled between all nodes where you want to run
benchmarks and mpi_hosts file must be updated to include each node.

MPI Latency

MPI latency is measured between two nodes using one core (MPI rank) per node.

:> ./run_imb 2 Pingpong
...
#---
Benchmarking PingPong
#processes = 2
#---
#bytes #repetitions t[usec] Mbytes/sec
...

The resulting output in the third column (t[usec]) is latency as a function of
message size. Typically, 8-byte latency is used for performance analysis. The
analogous benchmark with OMB is called osu_latency. Sometimes, the MPI rank
needs to be pinned to a certain CPU socket in order to achieve the best latency (see
MPI Affinity). Note that the bandwidth returned is from a single buffer (mpi_send/
recv) and does not fully stress the throughput capability of the network.

MPI Bandwidth

MPI bandwidth is measured between two nodes using one or more ranks per node. As
you use more ranks per node, the aggregate bandwidth increases for lower message
sizes. The Uniband and Biband benchmarks for MPI bandwidth measurements are
used because they perform many simultaneous, non-blocking sends and are able to
stream messages continuously and saturate the network.

The following is an example of one rank per node for uni-directional bandwidth:

:> ./run_imb 2 Uniband
...
#---
Benchmarking Uniband
#processes = 2
#---
#bytes #repetitions Mbytes/sec Msg/sec
...

The third column (Mbytes/sec) reports MPI bandwidth. The fourth column (Msg/
sec) is message rate (discussed in the next section).

RMPI Performance—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 23

To run a bidirectional bandwidth test, replace Uniband with Biband in the previous
example. The analogous benchmarks in OMB are osu_bw and osu_bibw.

The following example shows how to run both Uniband and Biband simultaneously,
using four MPI ranks per node:

:> PROCS_PER_NODE=4 ./run_imb 8 Uniband Biband -npmin 8

NOTE

The -npmin 8 flag is required to ensure that exactly four communicating pairs are
running, the first four ranks on node1 and the second four ranks on node2.

NOTE

PROCS_PER_NODE var can also be added to the params file.

The analogous benchmark in OMB is osu_mbw_mr. There is no equivalent bidirectional
benchmark.

MPI Message Rate

Message rate is also measured with Uniband and Biband benchmarks, but using as
many ranks per node as there are cores on the node. The message rate is the total
number of MPI messages (typically eight bytes) sent between the two nodes. This is a
derived quantity that can be calculated from the bandwidth output.

The following is an example on nodes with 32 physical cores per node:

:> PROCS_PER_NODE=32 ./run_imb 64 Uniband -npmin 64
...
#---
Benchmarking Uniband
#processes = 64
#---
#bytes #repetitions Mbytes/sec Msg/sec
...

The fourth column (Msg/sec) is the message rate and is typically quoted for eight
bytes. The same method can be used to measure bidirectional message rate with the
Biband benchmark.

NOTE

If you are using OpenMPI within a SLURM job, depending on the environment you may
need to properly specify the environment variable SLURM_TASKS_PER_NODE. For
example, for a 2-node, 32-process per node job, it may be necessary to export
SLURM_TASKS_PER_NODE="32(x2)". This may also be handled by directives to
srun or sbatch.

R Intel® Ethernet Fabric—MPI Performance

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
24 Doc. No.: 632488, Rev.: 1.8

MPI Collectives

Performance can be measured for a variety of collectives such as Allreduce. These
benchmarks can be run between many nodes. For example, a 128-node, 32-rank per
node Allreduce can be run with the following command:

:> PROCS_PER_NODE=32 ./run_imb $((128*32)) Allreduce -npmin $((128*32))
...
#-- #
Benchmarking Allreduce # #processes = 4096
#--
#bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]
...

Typically, t_avg latency gives you a good idea of the performance of the system.
Sometimes, large deviations between t_min and t_max can indicate suboptimal
performance and perhaps system jitter effects.

Intel® MPI Library Settings

NOTE

The information in this section assumes the use of Intel® MPI Library as recommended
in the Intel® Ethernet Fabric Suite Software Release Notes.

For best performance, Intel recommends that you use the PSM3 libfabric (OFI)
provider—a high-performance interface to the Intel® Ethernet Fabric. Note that as of
Intel® MPI 2019, only OFI fabric is supported.

First, load the Intel® MPI library (and other Intel tools) into your environment:

:> source /opt/intel/oneapi/setvars.sh

If this was successful, you may check the version of MPI loaded in the environment:

:> mpirun -version
Intel(R) MPI Library for Linux OS, Version 2021.3 Build 20210601 (id: 6f90181f1)
Copyright 2003-2021, Intel Corporation.

You may instead want to source the exact MPI library instead of the one bundled with
oneAPI. The exact paths and location of the corresponding mpivars.sh or env/
vars.sh vary from system to system. Set these two environment variables:

• export I_MPI_FABRICS=shm:ofi (preferred)

or

export I_MPI_FABRICS=ofi to not use Intel® MPI's shared-memory
communications

• export FI_PROVIDER=psm3

4.2

RMPI Performance—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 25

For more details on available options, refer to the Intel® MPI Library Developer
Reference for Linux OS found at https://software.intel.com/en-us/mpi-developer-
reference-linux, specifically the section titled "Environment Variables for Fabrics
Control". To ensure that the Intel® MPI fabric or provider is what you expect
(especially that PSM3 is the provider for OFI), use -genv I_MPI_DEBUG=5 option to
view the debug output. You should see output such as:

[0] MPI startup(): libfabric version: 1.12.1-impi
[0] MPI startup(): libfabric provider: psm3

PSM3 Environment Variables

Certain non-default settings for PSM3 environment variables may improve HPC
applications or microbenchmark performance. The following tunings have been tested
on Intel® Xeon® Scalable Processors with positive results. See the Intel® Ethernet
Fabric Suite Host Software User Guide for additional details of the PSM3 environment
variables.

NOTE

It is possible that adjusting these variables for other workloads not shown in the
following table may also help improve performance

NOTE

Do not enable every setting and expect to improve performance for an arbitrary
application. In most cases, the optimal performance is achieved with the default
settings.

It is possible that adjusting these variables for other workloads not listed may also
help improve performance.

Table 3. PSM3 RoCEv2 (Verbs) Performance Tunings

Application/Benchmark/Metric Tuning Parameters

HPCC PTRANS PSM3_FLOW_CREDITS=16 significantly increases PTRANS GB/s
performance (measured at 16 nodes, 52 cores per node).

HPCC MPIFFT PSM3_FLOW_CREDITS=16 significantly increases MPIFFT GFlops
performance (measured at 16 nodes, 52 cores per node).
PSM3_RDMA=0 (currently the default) performs better than RDMA mode
1.

QCD, Alltoall collectives, and other bandwidth
dependent applications

PSM3_ERRCHK_TIMEOUT=20:640:2, default is 160:640:2
(min:max:factor) in milliseconds.
Decreasing the first number increases the rate of PSM3 retries in the
case of packet drops.

122.tachyon (Graphics, parallel ray tracing - Spec
MPI 2007, medium suite)

PSM3_RCVTHREAD_FREQ=600:1000:1, increasing frequency of
receive thread polling (default is PSM3_RCVTHREAD_FREQ=10:100:1).

MPI uni and bi-directional bandwidth PSM3_RDMA=1,2, or 3 increases bandwidth from the default of
PSM3_RDMA=0.

MPI uni and bi-directional bandwidth, PSM3_RDMA=1
mode, greater than 128 KB

PSM3_RV_QP_PER_CONN=4 (default). Uses multiple queue pairs per
MPI process.

continued...

4.3

R Intel® Ethernet Fabric—MPI Performance

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
26 Doc. No.: 632488, Rev.: 1.8

https://software.intel.com/en-us/mpi-developer-reference-linux
https://software.intel.com/en-us/mpi-developer-reference-linux

Application/Benchmark/Metric Tuning Parameters

PSM3_RV_MR_CACHE_SIZE=1024 increases the maximum amount of
CPU memory to be pinned per process by the rendezvous module's CPU
MR cache. In units of megabytes. Prevents major bandwidth drops for
very large message sizes such as greater than 128 MB.

MPI uni and bi-directional bandwidth, PSM3_RDMA=1
mode, 8192-32768 bytes

PSM3_MQ_RNDV_NIC_THRESH=8000 switches to rendezvous protocol
at smaller message sizes (default is
PSM3_MQ_RNDV_NIC_THRESH=64000).

MPI uni-directional bandwidth PSM3_QP_PER_NIC=2 (or 4) increases uni-directional streaming
bandwidth (measured with IMB-MPI1 Uniband or osu_mbw_mr).
No impact on bi-directional bandwidth.

MPI latency PSM3_RDMA=3 decreases single core latency relative to other modes.

In order to set these environment variables with the Intel® MPI Library, you can
export them in your environment (e.g. export PSM3_RDMA=1), or you can pass
them as mpirun command arguments (for example, mpirun ... -genv
PSM3_RDMA=1 ...). In order to set these environment variables with Open MPI, you
must pass them as mpirun command arguments (for example, mpirun ... -x
PSM3_RDMA=1 ...)

You can confirm the environment variables took effect, or determine what the existing
settings are, by setting PSM3_VERBOSE_ENV=2:. By including the colon at the end
will output only for rank number 0 and prevent a lot of repeated output.

PSM3_RDMA Modes

PSM3 supports multiple RoCE data movement modes that are configurable with the
environment variable PSM3_RDMA. For more details, refer to the Intel® Ethernet Fabric
Suite Host Software User Guide. In general , PSM3_RDMA=1 mode provides the best
single thread bandwidth performance, and PSM3_RDMA=3 provides the lowest latency.
Most applications perform the best with either mode 0 or 1.

Packet Loss/Drops

If PFC is configured and tuned properly, there should be minimal to no packet losses
or drops. You can use PSM3 profiling (PSM3_PRINT_STATS) to determine if PSM3 is
experiencing drops and re-transmitting messages, which is bad for performance. If
you see non-zero entries for err_chk_send or err_chk_recv, this means that the
network is experiencing losses from which PSM3 has to recover. Check the PFC
configuration. Also try to pace PSM3 by reducing PSM3_FLOW_CREDITS to alleviate
the drops and possibly improve performance.

PSM3_PRINT_STATS

The profiling tool, PSM3_PRINT_STATS, can be used to debug low performance
problems. Set to -1 to output statistics after the end of the run, or to a positive
integer value (in seconds) to print statistics at every interval in seconds. Note that a
file is generated per PSM3 process.

For delicate comparisons between runs, you may want to enable
PSM3_PRINT_STATSMASK=0xfffffff in order to print all values, including zero
values, so side-by-side comparisons of output are formatted similarly.

RMPI Performance—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 27

MPI Collective and Intel® oneCCL Tunings

Intel recommends using the latest Intel® MPI Library when possible for optimized MPI
collectives performance. The following table is a collection of additional tuning
recommendations. It is possible that the tunings apply to other versions of Intel® MPI
Library, but the version where it was discovered is listed for completeness.

Application/
Collective

MPI Tuning Notes

NAS Parallel
Benchmarks, FT
kernel

Intel® MPI
Library 2019
Update 9

-genv I_MPI_ADJUST_ALLTOALL=3 Significantly improves NAS
Parallel Benchmarks performance
for FT kernel (class C, eight
nodes, 52 processes per node).

MPI Alltoall Intel® MPI
Library 2019
Update 9

-genv I_MPI_ADJUST_ALLTOALL=4 for 16
nodes, 52 ppn, 512 Bytes-1 KB, 8 KB-512 KB

Other algorithms may help other
node counts, ppn, and message
sizes.

MPI Alltoall Intel® MPI
Library 2021
Update 5

-genv I_MPI_ADJUST_ALLTOALL=2 for 32
nodes, 1 ppn

Use in conjunction with . -genv
PSM3_RDMA=1.

MPI_Allreduce Intel® MPI
Library 2021
Update 2

-genv
I_MPI_ADJUST_ALLREDUCE="4:0-1048575;2
:1048576-104857600" for 16-32 nodes, 52 ppn

Use in conjunction with
PSM3_RDMA=1.
Algorithm 4 (Topology aware
Reduce and Bcast) is used for
message sizes below 1 MB, and
algorithm 2 (Rabenseifner's) is
used for message sizes >=1 MB.

Note that Intel® MPI Library is specifically tuned for PSM3 running with RDMA mode 0.
When running in a mode other than 0 (such as PSM3_RDMA=1), it is possible that
other MPI collective algorithms may provide improved performance. See https://
www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-
linux/top/environment-variable-reference/i-mpi-adjust-family-environment-
variables.html for a summary of the available variables.

The autotuner feature of Intel® MPI Library can be used to re-tune an application and
replace the existing default tunings. See https://software.intel.com/
content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/
environment-variable-reference/tuning-environment-variables/autotuning.html for
details. This may be beneficial after making a change such as switching from
PSM3_RDMA=0 (default) to PSM3_RDMA=1.

Intel® oneCCL

Intel® oneAPI is a set of APIs and tools that provide a multi-vendor cohesive
environment for developing and executing high performance applications on CPUs as
well as various accelerated processing elements such as GPUs. Within oneAPI, the
Intel® oneAPI Collectives Communications Library (oneCCL) is a scalable and high-
performance communication library for Deep Learning (DL) and Machine Learning (ML)
workloads.

oneCCL is not included in the Intel® Ethernet Fabric Suite software, but is available
separately. Go to https://www.intel.com/content/www/us/en/developer/tools/oneapi/
oneccl.html for more information on oneCCL and oneAPI.

4.4

R Intel® Ethernet Fabric—MPI Performance

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
28 Doc. No.: 632488, Rev.: 1.8

https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/i-mpi-adjust-family-environment-variables.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/i-mpi-adjust-family-environment-variables.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/i-mpi-adjust-family-environment-variables.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/i-mpi-adjust-family-environment-variables.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/tuning-environment-variables/autotuning.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/tuning-environment-variables/autotuning.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/tuning-environment-variables/autotuning.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/oneccl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/oneccl.html

oneCCL provides efficient collective communications that are heavily used in DL and
ML. It also allows the user to easily trade off compute for communication performance
to drive scalability of communication patterns. The following table outlines helpful
tunings for applications using oneCCL.

Worker Threads

oneCCL provides environment variables to control worker thread configuration. With
these variables, you can trade off the CPU resources used for computing and
communication. For example, you can run Deep Learning Recommendation Model
(DLRM) with hyperthreading enabled, one MPI process per socket, and dedicate the
first four hyperthreaded CPU cores for communication, and all of the physical cores for
computing. To do this, you set the environment variables as shown in the following
table.

Environment Variable Tuning Impact

I_MPI_PIN_DOMAIN Define domains (non-overlapping subnet of logic processes) on a node, and the
rules for how MPI processes are bound to the domains. MPI process threads can
freely migrate from one logic processor to another within its corresponding
domain.
For example, for nodes with two CPU sockets, you can define two domains as
shown below, and then have one MPI process per socket with all the threads on
separate physical CPU cores:

I_MPI_PIN_DOMAIN=[0xffffffffffffff,0xffffffffffffff00000000000000,]

See https://www.intel.com/content/www/us/en/develop/documentation/mpi-
developer-reference-linux/top/environment-variable-reference/process-pinning/
interoperability-with-openmp-api.html for more information.

OMP_NUM_THREADS Set the maximum number of OpenMP threads that can be used for a parallel
region.
For example, to allow an OpenMP application to use all cpu cores, you can set
OMP_NUM_THREADS to the number of physical cores per cpu socket.
See https://www.openmp.org/spec-html/5.0/openmpse50.html for more
information.

CCL_WORKER_COUNT Specify the number of oneCCL worker threads.
For example, to use four CPU cores for communication per process, you can set
the following to have four CCL workers.

CCL_WORKER_COUNT=4

See https://oneapi-src.github.io/oneCCL/env-variables.html#ccl-worker-count
for more information.

CCL_WORKER_AFFINITY Specify CPU affinity for oneCCL worker threads.
For example, on a system with 112 physical CPU cores, you can use the following
setting to have the first four hyperthreaded CPU cores dedicated for
communication.

CCL_WORKER_AFFINITY='112,113,114,115,168,169,170,171'

See https://oneapi-src.github.io/oneCCL/env-variables.html#ccl-worker-affinity
for more information.

RMPI Performance—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 29

https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/process-pinning/interoperability-with-openmp-api.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/process-pinning/interoperability-with-openmp-api.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/process-pinning/interoperability-with-openmp-api.html
https://www.openmp.org/spec-html/5.0/openmpse50.html
https://oneapi-src.github.io/oneCCL/env-variables.html#ccl-worker-count
https://oneapi-src.github.io/oneCCL/env-variables.html#ccl-worker-affinity

Multi-NIC

oneCCL supports multi-NIC environments and is controlled primarily by three
environment variables: CCL_MNIC, CCL_MNIC_NAME, and CCL_MNIC_COUNT.

• Setting CCL_MNIC to local can improve data communication performance because
it will select NICs local to the NUMA node where the worker thread is running.

• Specifying CCL_MNIC_COUNT to use multiple NICs for communication can
significantly improve performance as well.

Refer to the oneCCL documentation for more information: https://oneapi-
src.github.io/oneCCL/env-variables.html#multi-nic.

NOTE

This methodology is used in place of the traditional PSM3_MULTIRAIL method of
striping data across multiple NICs.

You should carefully study the difference in performance between the two methods
(using oneCCL MNIC capability or PSM3 multi-rail capability) before choosing one over
the other. In many cases, especially for AI workloads with larger messages, allowing
oneCCL to do the multi-NIC load balancing can provide performance advantages due
to a higher PSM3 MR cache hit rates since each NIC will repeatedly see the same slice
of each IO buffer. In contrast, when PSM3_MULTIRAIL is used, the IO buffers will be
load balanced across the specified NICs and each NICs MR cache may need to be
larger so that any NIC may see any slice of a given IO buffer.

Collective Algorithms

For some oneCCL operations, specifying a collective algorithm may provide better
performance. For example, you can control the Allreduce algorithm used by setting
CCL_ALLREDUCE. See https://oneapi-src.github.io/oneCCL/env-
variables.html#collective-algorithms-selection for details. In general, oneCCL attempts
to use sensible defaults. In testing at 32 nodes with one process per node and eight
worker threads, the ring_rma algorithm was found to perform the best for message
sizes greater than 8 MB. For intermediate message sizes, the Rabenseifner algorithm
was found to perform the best. The optimal algorithm will vary based on node count,
message sizes, and other factors.

PSM3 Tunings

For AI training and other applications with large message Allreduce collectives, the
performance may be improved by enabling PSM3_RDMA=1. At a scale of 32 nodes with
one process per node and eight worker threads, performance may be further improved
by setting PSM3_MQ_RNDV_NIC_WINDOW=524288 (the default is 131072, or 128 KB).

R Intel® Ethernet Fabric—MPI Performance

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
30 Doc. No.: 632488, Rev.: 1.8

https://oneapi-src.github.io/oneCCL/env-variables.html#multi-nic
https://oneapi-src.github.io/oneCCL/env-variables.html#multi-nic
https://oneapi-src.github.io/oneCCL/env-variables.html#collective-algorithms-selection
https://oneapi-src.github.io/oneCCL/env-variables.html#collective-algorithms-selection

MPI Affinity

The choice of the NIC with respect to the location of the MPI process has a measurable
impact on performance. For example, latency-sensitive applications that use a NIC on
a remote NUMA node will incur a performance cost related to memory/cache locality of
the MPI process and an additional delay related to inter-NUMA interconnect traffic.

To determine which NUMA node a NIC is connected to, for example, an Intel® Ethernet
800 Series PCIe Adapter:

:> lspci | grep 810
18:00.0 Ethernet controller: Intel Corporation Ethernet Controller E810-C for
QSFP (rev 02)
18:00.1 Ethernet controller: Intel Corporation Ethernet Controller E810-C for
QSFP (rev 02)

NOTE

The first column is the slot number.

To find the NUMA node the slot is connected to:

:> lspci -v -s 18:00.0 | grep NUMA
 Flags: bus master, fast devsel, latency 0, IRQ 39, NUMA node 0

From the previous output, you can see the adapter is connected to NUMA node 0. This
corresponds to the first 26 CPU cores as seen in:

:> lscpu | grep NUMA
NUMA node(s): 2
NUMA node0 CPU(s): 0-25,52-77
NUMA node1 CPU(s): 26-51,78-103

To minimize the cross-NUMA latency penalties described previously, you must make
sure that the MPI process is pinned to any of the CPU cores 0-25. Typically, this is the
default behavior of an MPI library. In the case that the NIC is connected to NUMA node
1, instruct the MPI library to pin the rank to any of CPU cores 26-51. For example,
with Open MPI:

:> mpirun ... taskset -c 26 ./osu_latency

Here the utility affinitizes the MPI process to the first core on socket 1, and a lower
latency will result than if pinned to any of cores 0-25 (the default). With the Intel®
MPI Library, use the built-in environment variable -genv
I_MPI_PIN_PROCESSOR_LIST=26. This environment variable can take a list or range
of cores for multi-PPN tests. For more details, see the Intel® MPI Library
documentation.

4.5

RMPI Performance—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 31

Dual/Multi-Rail

On systems with more than one NIC per node, PSM3 can use a feature known as
multi-rail in order to use multiple NICs and increase the available bandwidth to the
node. For bandwidth-hungry applications, multi-rail configurations may offer improved
performance. See the Intel® Ethernet Fabric Suite Host Software User Guide for more
details on configuring and using multi-rail. Note that on systems with more than one
active NIC, each PSM3 process will use the NUMA-local NIC for communication. You do
not have to explicitly set PSM3_MULTIRAIL in order to use all NICs, as long as there
is at least one PSM3 process on the same NUMA node.

TCP Performance

While most HPC applications use RDMA-capable networks and the RoCE
implementation of PSM3, it is also possible to run PSM3 using standard TCP. This
section outlines helpful tunings for running PSM3 with TCP. Consult the Intel® Ethernet
Fabric Suite Host Software User Guide for details on how to run PSM3 over TCP.

In the 11.2 software release (and later), you must specify at a minimum
PSM3_HAL=sockets. By default, PSM3 will select the fastest NIC in the system.
However, you may want to specify exactly which NIC to use with
PSM3_NIC=<interface>, where interface is the name of the net device (not RDMA
device).

PSM3 Environment Variable Tuning Impact

PSM3_TCP_SKIPPOLL_COUNT Default is "20:10".
Some applications benefit from disabling this feature
(set to 0:0) such as tachyon, socorro, and dmilc
from the SPEC MPI 2007 application suite.

PSM3_MTU Default is 65536.
Higher values may increase bandwidth for single-
rank performance, but lower values (such as
PSM3_MTU=16384) have been shown to improve
performance for some applications (for example,
LAMMPS, rhodopsin protein benchmark).

FI_PSM3_LAZY_CONN Default is 0 (off).
Set to 1 to increase performance of some
applications. This only establishes connections
between endpoints when first used for
communications, instead of establishing connections
between all endpoints at job start.

4.6

4.7

R Intel® Ethernet Fabric—MPI Performance

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
32 Doc. No.: 632488, Rev.: 1.8

5.0 Performance Tuning for Intel GPU

The focus of this chapter is on network performance tuning when running with Intel
GPUs.

oneAPI Level Zero and GPUDirect

As with the non-GPU enabled PSM3, the oneAPI Level Zero-enabled PSM3 is also
tuned to deliver optimized out-of-the-box performance for most workloads. There are
certain PSM3 thresholds that are user-configurable and may deliver improved
performance depending on the workload. See the Intel® Ethernet Fabric Suite Host
Software User Guide for detailed explanation on each environment variable.

For example:

• PSM3_RV_GPU_CACHE_SIZE and PSM3_RV_MR_CACHE_SIZE: Increasing to 4096
may improve MR cache hit rates and application performance.

When running Intel GPU applications, it may be necessary to increase the maximum
allowed open files through the Linux ulimit -n limit command or by
editing /etc/security/limits.conf and increasing the nofile limit. Depending
on the applications and hardware configuration, values as large as 524288 may be
required.

When running an Intel GPU application, the following additional environment variable
settings are recommended:

EnableImplicitScaling=0
NEOReadDebugKeys=1

When running an Intel GPU application with Intel MPI, the following additional
environment variable settings are recommended:

I_MPI_OFFLOAD=1
I_MPI_OFFLOAD_PIPELINE=0
I_MPI_OFFLOAD_RDMA=1
I_MPI_OFFLOAD_RDMA_THRESHOLD=0

NOTE

In order to take advantage of the performance improvement from Direct GPU Access,
you will need to set the parameter prelim_override_p2p_dist to 1 for the i915
Graphics Driver. See Intel® Ethernet Fabric Suite Software Installation Guide for more
information.

5.1

RPerformance Tuning for Intel GPU—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 33

6.0 Performance Tuning for NVIDIA GPU

The focus of this chapter is on network performance tuning when running with NVIDIA
GPUs.

CUDA and GPUDirect

As with the non-CUDA enabled PSM3, the CUDA-enabled PSM3 is also tuned to deliver
optimized out-of-the-box performance for most workloads. There are certain PSM3
thresholds that are user-configurable and may deliver improved performance
depending on the workload. See the Intel® Ethernet Fabric Suite Host Software User
Guide for detailed explanation on each environment variable.

For example:

• PSM3_MQ_RNDV_NIC_WINDOW (default 2097152): Decreasing to 65536
significantly improves large message ping-pong latency (osu_latency) but has a
negative effect on streaming bandwidth (osu_bw/osu_bibw).

• PSM3_CUDA_THRESH_RNDV (default 8000): Defines the message size, in bytes,
when the protocol switches from eager to rendezvous. Messages below the
threshold use eager, and at or above the threshold use rendezvous.

— For the verbs HAL (PSM3_HAL=verbs), larger values decrease latency in 8
KB-32 KB message size range, but may have a negative impact on bandwidth

— For the sockets HAL (PSM3_HAL=sockets), increased bandwidth is seen in the
8 KB-256 KB message size range when increasing this to a very large value
such as 2147483648 (or just above whatever the largest message size in the
application is). This effectively disables rendezvous and uses eager for all the
messages sizes.

• PSM3_GPUDIRECT_RDMA_SEND_LIMIT: As of the IEFS 11.3 release, this limit is
set to UINT_MAX such that PSM3 always uses GPU Direct for RDMA sends. On
systems with PCIe switches, this gives the best performance. On systems without
PCIe switches, you may see a slight benefit to bandwidth by reducing this
environment variable down to the previous default, or approximately
PSM3_GPUDIRECT_RDMA_SEND_LIMIT=30000 (bytes).

These observations are made when running the CUDA-enabled osu_latency, osu_bw,
and osu_bibw within the OSU Microbenchmarks suite.

NVIDIA Multi-Process Service (MPS)

For the majority of use cases, MPI applications using GPUs assign one MPI rank per
GPU. All of the communication for the GPU is handled through the single MPI rank. In
the case where it is desired to use multiple MPI ranks per GPU, significantly lower
performance may be seen. In this case, it may be beneficial to deploy NVIDIA Multi-
Process Service (MPS). See https://docs.nvidia.com/deploy/mps/index.html for more
details.

6.1

R Intel® Ethernet Fabric—Performance Tuning for NVIDIA GPU

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
34 Doc. No.: 632488, Rev.: 1.8

https://docs.nvidia.com/deploy/mps/index.html

NVIDIA Collectives Communication Library (NCCL)

The Intel® Ethernet Fabric Suite Host Software User Guide describes how to set up
and run PSM3 with NCCL. This section highlight some of the NCCL and PSM3
environment variables that impact performance when running with NCCL.

When running PSM3 and NCCL, performance benefits have been seen when reducing
the size of the buffer used by NCCL by setting NCCL_BUFFSIZE=262144. The default
buffer size is 4194304 (4 MB). See https://docs.nvidia.com/deeplearning/nccl/user-
guide/docs/env.html#environment-variables for more details on the available NCCL
environment variables.

6.2

RPerformance Tuning for NVIDIA GPU—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 35

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html#environment-variables
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html#environment-variables

7.0 Priority Flow Control Configuration and Tuning

Priority Flow Control (PFC) allows Ethernet to be configured as a lossless network.
Lossless behavior is a prerequisite of RoCEv2 and essential to getting good
performance with RoCEv2 for both PSM3 and storage uses.

This chapter will provide guidelines and examples on how to configure PFC on various
Ethernet NICs and switches. Consult your NIC and switch vendor documentation for all
details regarding enabling PFC. Note that these examples are aimed at providing
lossless network traffic for one traffic class.

NIC Configuration for PFC

NOTE

A detailed discussion of PFC is beyond the scope of this document.

In general, the Ethernet NICs are configured to use software Data Center Bridging
(DCB) in willing mode. Then, the switches are configured for DCB (priority settings,
traffic classes, bandwidth allocations, headroom, and so on) on the switch ports. A
detailed explanation of these implementations can be found in the Intel® Ethernet 800
Series Linux Flow Control Configuration Guide for RDMA Use Cases. Note that when
non-willing mode is used to explicitly configure PFC (such as for a back-to-back test
configuration without a switch), additional steps must be taken to ensure the recipe is
persistent across node reboots.

The Intel® Ethernet Fabric Suite Software Installation Guide discusses how to use the
FastFabric installation procedure to automate setting up the NICs for PFC in willing
mode. Following is a step-by-step recipe that is known to work if you wish to
customize or understand more fully what settings are being implemented. In the
examples, replace <interface> with the name of the RDMA device's corresponding
network interface name.

Enable Willing Mode on Intel Ethernet NICs

When the NICs are configured in Willing mode and connected to a switch with DCB
configured, the NICs will automatically apply the same DCB configuration. This
example shows how to enable software willing mode on a CVL NIC. Consult your
switch manual for DCB configuration steps, or the next section for an example.

1. Disable Link-level Flow Control (LFC).

:>ethtool -A <interface> rx off tx off

7.1

R Intel® Ethernet Fabric—Priority Flow Control Configuration and Tuning

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
36 Doc. No.: 632488, Rev.: 1.8

HTTPS://CDRDV2.INTEL.COM/V1/DL/GETCONTENT/635330
HTTPS://CDRDV2.INTEL.COM/V1/DL/GETCONTENT/635330

2. Verify that LFC is disabled.

:> ethtool -a <interface>
Pause parameters for <interface>:
Autonegotiate: on
RX: off
TX: off
RX negotiated: off
TX negotiated: off

3. Disable Firmware DCB.

:>ethtool --set-priv-flags <interface> fw-lldp-agent off

4. Verify that Firmware DCB is disabled.

:>ethtool --show-priv-flags <interface> | grep fw-lldp-agent
fw-lldp-agent : off

5. Install OpenLLDP if not already installed.

• For RHEL system:

yum install lldpad

• For SLES system:

zypper install open-lldp

• For Ubuntu system:

apt-get install lldpad

6. Start the Open LLDP daemon.

lldpad -d

7. Disable CEE transmission.

lldptool -Ti <interface> -V CEE-DCBX enableTx=no

8. Reset the DCBX mode to be auto.

lldptool -Ti <interface> -V IEEE-DCBX mode=reset

9. Configure willing configuration.

lldptool -Ti <interface> -V ETS-CFG enableTx=yes willing=yes

10. Configure willing recommendation.

lldptool -Ti <interface> -V ETS-REC enableTx=yes

RPriority Flow Control Configuration and Tuning—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 37

11. Configure willing PFC.

lldptool -Ti <interface> -V PFC willing=yes enableTx=yes

12. Terminate the first instance of lldpad.

lldpad -k

13. Remove lldpad state records from shared memory.

lldpad -s

14. Restart service lldpad.

systemctl restart lldpad

15. Verify CEE mode is disabled.

lldptool -ti <interface> -V CEE-DCBX -c
enableTx=no

16. Verify DCBX mode is auto.

lldptool -ti <interface> -V IEEE-DCBX -c
mode=auto

Switch Configurations for PFC

This section provides examples for how to configure and tune various Ethernet
switches for the best PFC performance.

Configuring PFC on Arista 7060 Switches
The following recipe maps all traffic to priority 0 on the Arista DCS-7060CX-32S-R
switch running EOS 4.24.1.1F, which has been shown to reliably enable PFC.

1. Open the switch configuration terminal.

myswitch>enable
myswitch#config terminal

2. Configure the QoS policy.

myswitch(config)#sh run sec test
myswitch(config)#ip access-list test
myswitch(config-acl-test)#counters per-entry
myswitch(config-acl-test)#10 permit ip any any
myswitch(config-acl-test)#sh run sec class
myswitch(config-acl-test)#class-map type qos match-any test
myswitch(config-cmap-qos-test)#match ip access-group test
myswitch(config-cmap-qos-test)#policy-map type quality-of-service test
myswitch(config-pmap-quality-of-service-test)#class test
myswitch(config-pmap-c-quality-of-service-test-test)#set cos 0
myswitch(config-pmap-c-quality-of-service-test-test)#set traffic-class 0
myswitch(config-pmap-c-quality-of-service-test-test)#class class-default

7.2

R Intel® Ethernet Fabric—Priority Flow Control Configuration and Tuning

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
38 Doc. No.: 632488, Rev.: 1.8

myswitch(config-pmap-c-quality-of-service-test-class-default)#exit
myswitch(config-pmap-quality-of-service-test)#exit
myswitch(config)#

3. Apply the policy on the input interface.

myswitch(config)#interface ethernet 1/1-32/1
myswitch(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#service-policy type qos input
test
myswitch(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#priority-flow-control
priority 0 no-drop
myswitch(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#qos trust cos
myswitch(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#exit

4. (Optional) Copy the running configuration to the startup configuration to persist a
reboot.

myswitch(config)# copy running-config startup-config

Set Up PFC on Arista DCS-7170-32CD-F

On an Arista DCS-7170-32CD-F switch with Arista EOS software version 4.22.1FX-CLI,
the following steps will set up PFC (see the complete Arista EOS documentation at
https://www.arista.com/en/um-eos for more guidance).

1. Open the switch configuration terminal.

myswitch>enable
myswitch#config terminal

2. Configure PFC.

localhost(config)# interface ethernet 1/1-32/1
localhost(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#priority-flow-control on
localhost(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#dcbx mode ieee
localhost(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#priority-flow-control
priority 0 no-drop
localhost(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#flowcontrol send off
localhost(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#flowcontrol receive off
localhost(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#qos trust cos

3. Confirm that PFC is actually enabled on priority 0.

localhost(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#show priority-flow-control
The hardware supports PFC on priorities 0 1 2 3 4 5 6
PFC receive processing is enabled on priorities 0 1 2 3 4 5 6 7
Global PFC : Enabled

E: PFC Enabled, D: PFC Disabled, A: PFC Active, W: PFC Watchdog Enabled
Port Status Priorities Action Timeout Recovery
Polling Note
 Interval/Mode Config/Oper
--

Et1/1 E A - 0 - - - / - - / -
Et2/1 E A - 0 - - - / - - / -
Et3/1 E A - 0 - - - / - - / -
...
...
Port RxPfc TxPfc
Et1/1 2843498825 79913457
Et2/1 2203656611 73527802

RPriority Flow Control Configuration and Tuning—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 39

https://www.arista.com/en/um-eos

Et3/1 2459768514 70122076
Et4/1 2508639684 74898208
...

NOTE

Only priority 0 is listed as "Enabled" and "Active". The Intel® Ethernet 800 Series PCIe
Adapter will, by default, use priority 0 when running in RoCEv2 mode. Other than
setting up the NICs as described in the previous section, no additional flags are
necessary to target priority 0 when using Open MPI as packaged with Intel® EFS or
the Intel® MPI Library.

Further PFC Tuning of the Arista 7170 Switch

Under highly loaded scenarios, the default headroom buffer sizes on the Arista 7170
switch with EOS are not large enough, and packet loss occurs even if PFC appears to
be functioning correctly. When a receiving node sends a Tx pause packet, it takes time
for that packet to traverse the network and reach its destination. Headroom buffers on
the switch exist to absorb all packets that are already transmitting at the time the Tx
pause is sent. The headroom tries to absorb all transmitting packets before the node
receiving the pause packet stops sending. If the headroom is exceeded, then drops
still occur and poor performance may result.

In order to tune the PFC headroom, the lower level registers must be adjusted. This
can be accomplished using the following steps:

1. Enter the following command, which queries pipe 1 for the existing headroom
limits:

localhost#enable
localhost#platform barefoot access rr dev_0 device_select tm_top tm_wac_top
wac_pipe[1] csr_mem_wac_ppg_hdr_lmt

NOTE

You can replace wac_pipe[1] with wac_pipe[3] to view the same limits for
pipe 3.

The output will look similar to:

0 [0041a000] : 00000000 : hdr_lmt[0]
0 [0041a004] : 000000e8 : hdr_lmt[1]
0 [0041a008] : 00000000 : hdr_lmt[2]
0 [0041a00c] : 000000e8 : hdr_lmt[3]
0 [0041a010] : 00000000 : hdr_lmt[4]
0 [0041a014] : 000000e8 : hdr_lmt[5]
0 [0041a018] : 00000000 : hdr_lmt[6]
0 [0041a01c] : 000000e8 : hdr_lmt[7]
0 [0041a020] : 00000000 : hdr_lmt[8]
0 [0041a024] : 000000e8 : hdr_lmt[9]
0 [0041a028] : 00000000 : hdr_lmt[10]
0 [0041a02c] : 000000e8 : hdr_lmt[11]
0 [0041a030] : 00000000 : hdr_lmt[12]
0 [0041a034] : 000000e8 : hdr_lmt[13]
0 [0041a038] : 00000000 : hdr_lmt[14]
0 [0041a03c] : 000000e8 : hdr_lmt[15]
0 [0041a040] : 00000000 : hdr_lmt[16]
0 [0041a044] : 000000e8 : hdr_lmt[17]
0 [0041a048] : 00000000 : hdr_lmt[18]

R Intel® Ethernet Fabric—Priority Flow Control Configuration and Tuning

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
40 Doc. No.: 632488, Rev.: 1.8

0 [0041a04c] : 000000e8 : hdr_lmt[19]
0 [0041a050] : 00000000 : hdr_lmt[20]
0 [0041a054] : 000000e8 : hdr_lmt[21]
0 [0041a058] : 00000000 : hdr_lmt[22]
0 [0041a05c] : 000000e8 : hdr_lmt[23]
0 [0041a060] : 00000000 : hdr_lmt[24]
0 [0041a064] : 000000e8 : hdr_lmt[25]
0 [0041a068] : 00000000 : hdr_lmt[26]
0 [0041a06c] : 000000e8 : hdr_lmt[27]
0 [0041a070] : 00000000 : hdr_lmt[28]
0 [0041a074] : 000000e8 : hdr_lmt[29]
0 [0041a078] : 00000000 : hdr_lmt[30]
0 [0041a07c] : 000000e8 : hdr_lmt[31]

In this example, the non-zero entries exist in the non-default PPG ids 1, 3, 5,
7,...31 (odd numbered). The exact non-default PPGs may vary from switch reboot
to switch reboot. The value in hex is 0xe8 cells (232) and each cell is 80 bytes.
Therefore, 232x80=18,560 bytes for each headroom buffer. In practice, increasing
this value up to 0xe80 (3712x80=296,960 bytes) is large enough to prevent drops
in a cluster size of 32 nodes.

2. To set this parameter for the non-zero PPG IDs in the previous output, the
following must be run on pipe 1 and 3:

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[1]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[1] 00000e80

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[3]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[1] 00000e80

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[1]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[3] 00000e80

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[3]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[3] 00000e80

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[1]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[5] 00000e80

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[3]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[5] 00000e80

...

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[1]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[31] 00000e80

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[3]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[31] 00000e80

3. Validate the setting took effect by re-running the command in step 1.

localhost#platform barefoot access rr dev_0 device_select tm_top tm_wac_top
wac_pipe[1] csr_mem_wac_ppg_hdr_lmt
0 [0040a000] : 00000000 : hdr_lmt[0]
0 [0040a004] : 00000e80 : hdr_lmt[1]
0 [0040a008] : 00000000 : hdr_lmt[2]
0 [0040a00c] : 00000e80 : hdr_lmt[3]
0 [0040a010] : 00000000 : hdr_lmt[4]
0 [0040a014] : 00000e80 : hdr_lmt[5]
0 [0040a018] : 00000000 : hdr_lmt[6]
...

RPriority Flow Control Configuration and Tuning—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 41

Configuring PFC on SONiC OS

At this time, non-willing mode must be used with SONiC, so PFC must be configured
explicitly on both the NIC and the switch.

To enable PFC explicitly on the NIC on TC0:

systemctl start lldpad
ethtool -A <interface> rx off tx off

ethtool --set-priv-flags ${interface} fw-lldp-agent off

lldptool -Ti ${interface} -V ETS-CFG willing=no
up2tc=0:0,1:0,2:0,3:0,4:0,5:0,6:0,7:0 \\
tsa=0:ets,1:strict,2:strict,3:strict,4:strict,5:strict,6:strict,7:strict
 \\
tcbw=100,0,0,0,0,0,0,0

lldptool -Ti ${iface} -V PFC willing=no enabled=0

Configuring PFC in the SONiC config_db.json file is beyond the scope of this document.
However, the following buffer sizes (in bytes) have been shown to work well for 16-32
nodes connected to a single 64-port Edgecore Mavericks switch with SONiC version
SONiC.202012.26143-dirty-20210729.160956:

 "BUFFER_PROFILE": {
 "ingress_lossless_profile": {
 "dynamic_th": "7",
 "pool": "[BUFFER_POOL|ingress_lossless_pool]",
 "size": "4096",
 "xoff": "100000",
 "xon": "18430"
 },

For more details on configuring SONiC, see the documentation found here: https://
github.com/Azure/SONiC/wiki/Configuration

Verification for PFC

It is important to verify PFC is set up properly and takes effect. This section provides
instructions for validating PFC.

Validating PFC with FastFabric Tools

In the Intel® Ethernet Fabric Suite FastFabric TUI, you can validate the functionality of
the PFC configuration. See Intel® Ethernet Fabric Suite FastFabric User Guide for more
details. This tool performs many-to-one incast traffic tests and detects packet loss. In
the FastFabric TUI, select 2 (Host Verification/Admin), then 6 (Verify PFC via empirical
test). This tool is more thorough than just verifying Tx/Rx pause counters, because an
improperly tuned PFC can still be lossy (for example, if the headroom buffer is not
large enough as described earlier in this chapter).

7.3

R Intel® Ethernet Fabric—Priority Flow Control Configuration and Tuning

Intel® Ethernet Fabric
Performance Tuning Guide March 2024
42 Doc. No.: 632488, Rev.: 1.8

https://github.com/Azure/SONiC/wiki/Configuration
https://github.com/Azure/SONiC/wiki/Configuration

Validating PFC with ethtool Counters

The switch outputs in the previous example show that the switch is receiving and
sending PFC pause frames. These should increase over time when an application is
running and heavily loading the switch. In order to confirm that pause frames are also
being sent and received by the hosts, you can use a watch command while the
application is running:

:> watch -d -n1 "ethtool -S <interface> | grep priority_0"
Every 1.0s: ethtool -S <interface> | grep priority_0

 tx_priority_0_xon.nic: 8281348
 tx_priority_0_xoff.nic: 2835583234
 rx_priority_0_xon.nic: 39950042
 rx_priority_0_xoff.nic: 39963415

Notice that there are both Tx and Rx pause frames for both XON (requested on) and
XOFF (requested off). You should see non-zero counters for all four. If you only see Tx
or Rx, PFC is not fully enabled on the system. In addition to seeing these pause
frames increasing, you should see zero LAN packet drops:

:> ethtool -S <interface> | grep drop
 rx_dropped: 0
 tx_dropped_link_down.nic: 0
 rx_dropped.nic: 0

You should also see zero RDMA discards reported by irdma:

:> grep . /sys/class/infiniband/<devname>/ports/1/hw_counters/*Discards

/sys/class/infiniband/<devname>/ports/1/hw_counters/ip4InDiscards:0
/sys/class/infiniband/<devname>/ports/1/hw_counters/ip6InDiscards:0

RPriority Flow Control Configuration and Tuning—Intel® Ethernet Fabric

Intel® Ethernet Fabric
March 2024 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.8 43

	Revision History
	Contents
	Tables

	Preface
	Intended Audience
	Intel® Ethernet Fabric Suite Documentation Library
	How to Search the Intel® Ethernet Fabric Suite Documentation Set

	Documentation Conventions
	Best Practices
	License Agreements
	Technical Support

	1.0 Introduction
	1.1 Terminology
	1.2 Performance Tuning Quick Start Guide

	2.0 BIOS and Platform Settings
	2.1 BIOS Recommendations
	2.2 GPU Direct Requirements

	3.0 Linux Settings
	3.1 CPU Frequency Scaling Drivers
	3.1.1 Using the Intel P-State Driver
	3.1.2 Using the ACPI CPUfreq Driver and cpupower Governor

	3.2 Priority Flow Control
	3.3 IRQ Affinity and irqbalance
	3.4 Memory Fragmentation
	3.5 irdma Module Settings
	3.6 Intel® Ethernet Driver (ice) Settings
	3.7 TuneD Tuning Service

	4.0 MPI Performance
	4.1 MPI Benchmark Fundamentals
	4.2 Intel® MPI Library Settings
	4.3 PSM3 Environment Variables
	4.4 MPI Collective and Intel® oneCCL Tunings
	4.5 MPI Affinity
	4.6 Dual/Multi-Rail
	4.7 TCP Performance

	5.0 Performance Tuning for Intel GPU
	5.1 oneAPI Level Zero and GPUDirect

	6.0 Performance Tuning for NVIDIA GPU
	6.1 CUDA and GPUDirect
	6.2 NVIDIA Collectives Communication Library (NCCL)

	7.0 Priority Flow Control Configuration and Tuning
	7.1 NIC Configuration for PFC
	7.2 Switch Configurations for PFC
	7.3 Verification for PFC

